The MCTDH Program: Structure and Development.

Graham Worth

King’s College London

1. Requirements of nuclear dynamics

2. Program structure
 – passing and storage of information

3. Analyse programs
Aims

- General dynamics program based on MCTDH – complex but powerful
- User friendly
- Efficient
- Easy to develop
- Modular (independent pieces), with library routines for frequent operations
Nuclear dynamics

In a basis set (DVR, HO, ...)

\[\Psi(q,t) = \sum_{j_1...j_f}^N A_{j_1...j_f}(t) \varphi_{j_1}^{(\kappa)}(q_1) \cdots \varphi_{j_f}^{(\kappa)}(q_f) \]

\[H\Psi = i\dot{\Psi} \]

matrix \quad vector

1. Set up basis
2. Set up operator
3. Set up initial \(\Psi(t_0) \)
4. Propagate \(\Psi(t_0) \rightarrow \Psi(t) \)
 - evaluate information
5. Analyse information
Photodissociation on NOCl S1 surface

RUN-SECTION
name = nocl1 propagation
tinit = 0.0 tfinal = 25.0 tout = 1.0 tpsi = 1.0
output auto timing steps update speed gridpop psi
end-run-section

OPERATOR-SECTION
opname = nocl1
end-operator-section

SPF-BASIS-SECTION
rd = 5 rv = 5 theta = 5
end-spf-basis-section

PRIMITIVE-BASIS-SECTION
#Label DVR N Parameter
 rd sin 36 3.800 5.600 # N, xi, xf
 rv HO 24 2.136 0.272,eV 7.4667,AMU # N, x-eq, freq., mass
 theta Leg 60 0 all # N, l_z, sym
end-primitive-basis-section

INTEGRATOR-SECTION
CMF/var = 0.5, 1.0d-5 # initial step size (fs), CMF-accuracy
BS/spf = 8, 1.0d-6 # order, accuracy, [initial step size]
SIL/A = 15, 1.0d-6, standard # order, accuracy, error-estimate
end-integrator-section

INIT_WF-SECTION
file = nocl0
end-init_wf-section

end-input
Operation of Hamiltonian on ψ in DVR

$$H = T_1 \oplus T_2 \oplus \cdots \oplus T_f \oplus V$$

$$N^f \times N^f \quad N \times N \quad N^f$$

$$\Psi_I = \psi(i_1, i_2, \ldots i_\kappa \ldots i_f)$$
$$= \psi(I_v, i_\kappa, I_n)$$

$$(V\Psi)_{i_1, \ldots, i_f} = V(i_1, \ldots i_f)\psi_{i_1, \ldots, i_f}$$

"vector" N^f operations

$$(T\Psi)_{I_v, j_\kappa, I_n} = \sum_{i_\kappa} T_{j_\kappa, i_\kappa} \psi_{I_v, i_\kappa, I_n}$$

matrix \times tensor N^{f+1} operations
The MCTDH EOMs

\[\psi = \sum_{j_1 \ldots j_f} A_{j_1 \ldots j_f}(t) \varphi_{j_1}^{(1)}(t) \cdots \varphi_{j_f}^{(f)}(t) \]

\[= \sum_{J} A_{J} \phi_{J} \]

Basic Form:

\[i \dot{\mathbf{A}} = \mathbf{H} \mathbf{A} \]
\[i \dot{\mathbf{\varphi}} = (1 - P) \rho^{-1} \mathbf{H} \mathbf{\varphi} \]

where

\[H_{IJ} = \langle \Phi_I | H | \Phi_J \rangle \]

Using

\[\mathbf{\hat{H}} = \sum_n c_n h_n^{(1)} \cdots h_n^{(f)} \]

\[H_{IJ,n} = \langle \varphi_{i_1} | h_n^{(1)} | \varphi_{j_1} \rangle \cdots \langle \varphi_{i_f} | h_n^{(f)} | \varphi_{j_f} \rangle \]

so \(n \times n \) matrix \times tensor operations

\[\mathbf{HA} = \sum_n c_n h_n^{(1)} \cdots h_n^{(f)} \mathbf{A} \]

Similar operation used to build mean-fields

NB \(\varphi \) is a matrix

\[\varphi_{i\alpha} = \langle \chi_\alpha | \varphi_i \rangle = \varphi_i(x_\alpha) \]

so \(\mathbf{H} \mathbf{\varphi} \) is \((n \times n \) matrix) \times \((n \times N \) matrix)

\(h_n \mathbf{\varphi} \) is \((N \times N \) matrix) \times \((N \) vector)
Form 2: \[H = \sum_{\kappa} h_{\kappa} + H_R \]
\[i\dot{A} = H_R A \]
\[i\dot{\varphi} = (h_{\kappa} + (1 - P)\rho^{-1}H_R) \varphi \]

Form 3: \[\langle \varphi_i | \dot{\varphi}_j \rangle = -i\langle \varphi_i | g_{\kappa} | \varphi_j \rangle \]
\[i\dot{A} = \left(H_R - \sum g_{\kappa} \right) A \]
\[i\dot{\varphi} = \left(h_{\kappa} + g_{\kappa} + (1 - P)\rho^{-1}H_R \right) \varphi \]

Form 4. Multiset
\[\psi = \sum_{J}^{(\alpha)} A_{j}^{(\alpha)} \Phi_{j}^{(\alpha)} \] \hspace{1cm} (1)

\[i\dot{A}^{(\alpha)} = \sum_{\beta} H^{(\alpha\beta)} A^{(\beta)} \]
\[i\dot{\varphi}^{(\alpha)} = (1 - P^{(\alpha)})\rho^{(\alpha)-1} \sum_{\beta} H^{(\alpha\beta)} \varphi^{(\beta)} \]

Form 5. Combined modes. \(\varphi(q_i, \ldots, q_j) \)
SPFs now also use tensor structure to access grid points for one DOF \(\varphi(q_v, q_{\kappa}, q_n) \)
The MCTDH Program Structure
Include files

global.inc general information, e.g. max sizes
paths.inc paths where text files are stored
timing.inc timing information
versions.inc version information

maxdim.inc maximum no. of degrees of freedom
maxkoe.inc maximum no. of Hamiltonian terms
maxsta.inc maximum no. of states

griddat.inc Information on primitive basis (grid)
operdef.inc Information on operator
psidef.inc Information on wavefunction

runX.inc Information needed only in part X
genX.inc list of include files needed in part X
hpsi.inc Information required for H $\times \varphi$
Memory

main memory arrays:

psi, dtpsi
psi, time derivative

mc, mr, mi, ml
complex*16, real*8, integer,
logical arrays

ms, mf
complex*8, real*4 in ANALYSE

- Pointers allow arrays to be “unfolded” into entities, e.g. hloch (mean fields), dicht2 (reduced density matrices) etc.

- Sizes and pointers for entity arrays calculated in zeigX.F

- Pointers for memory arrays allocated in memX.F

- Memory arrays dynamically allocated for each part using callX C-routines

X = dvr, inwf, oper, prop,
from subroutine funkr (propwf/function.F):

C---
C Loop over correlated Hamiltonian terms
C 1. compute hpsi array
C 2. compute hteil matrices
C 3. compute hloch matrices and dtpsi for A coefficients
C 4. multiply hloch and hpsi and store in dtpsi
C---

ktype=0
 call hphi(time,psi,mc(mchpsi),
 mc(mchc),mr(mrhr),mi(mihi),ml(mlhl),ktype,1)

call phihphi(psi,mc(mchpsi),mc(mchteil),1,usehsym)

if (dentype .eq. 0) then
 call mfields(psi,dtpsi,mc,mi,ml,1,psi,0,lconst,usehsym,
 time)
else if (dentype .eq. 2) then
 call d2mfields(psi,dtpsi,mc,mi,ml,1,psi,0,lconst,usehsym,
 time)
endif

call hlochphi(dtpsi,mc(mchpsi),mc(mchloch),1,0)
from subroutine hphi (propwf/hphi.F):

```fortran
subroutine hphi(time,psi,hpsi,hc/hr,hi,hl,ktype,nham)

  implicit none

#include "global.inc"
#include "propwf.inc"

  integer     m,ktype,nham
  real*8      time
  complex*16  psi(dgldim),hpsi(hpsidim)
  complex*16  hc(*)
  real*8      hr(*)
  integer     hi(*)
  logical     hl(*)

  C --- LOOP OVER EACH MODE AND STATE ---

    do m = 1,nmode
      call hphi1m(time,psi(zetf(m,1)),hpsi,m,zetf(m,1),
                   phidim(m),hc/hr,hi,hl,ktype,nham)
    enddo

  return
end
```
from subroutine hphi1m (propwf/hphi.F):

subroutine hphi1m (time,psi,hpsi,m,zetf1,phidim1, +
 hc,hr,hi,hl,ktype,nham)
 ...
 complex*16 psi(zetf1:zetf1+phidim1-1),hpsi(hpsidim)
 ...
C --- LOOP OVER EACH HAMILTONIAN TERM ---

 do k=k1,k2
 s1=ki(k)
 if (kcalc(k)) then
 call hphi1mk(psi(zetf(m,s1)),hpsi(zhpsi(m,k)),
 m,k,dim(m,s1),subdim(m),hc,hr,hi,hl)
 endif
 enddo
from subroutine hphi1mk (propwf/hphi.F):

 subroutine hphi1mk (psi,hpsi,m,k,dim,subdim,hc,hr,hi,hl)
 .
 complex*16 psi(subdim,dim),hpsi(subdim,dim)
 .
 do e = 1,dim
 call hcall(m,k,hpsi(1,e),psi(1,e),subdim,hc,hr,hi,hl)
 enddo
 return
end

from subroutine hcall (propwf/hphi.F):

 subroutine hcall(m,k,hpsi,psi,subdim1,hc,hr,hi,hl)
 .
 complex*16 psi(subdim1),hpsi(subdim1)
 .
 call hop(f,k,hpsi,psi,hr(hrhops),subdim1,
 hi(hifftfak),hc(hchin),hc(hcrueck),
 hc(zeig),hc(zeig1))
Tensor structures

In A-vector,
\[\text{block(s)} = \text{vdim(m,s)} \times \text{dim(m,s)} \times \text{ndim(m,s)} \]

In SPF,
\[\text{subdim(m)} = \text{vgdim(f)} \times \text{gdim(f)} \times \text{ngdim(f)} \]

Modes and DOFs

In general \(\varphi^{(\kappa)}(Q_\kappa) \) where \(Q_\kappa = \{q_i, q_j, \ldots\} \) (combined modes)
Differentiate between “modes” and “dofs” (degrees of freedom).

DOF info corresponds to PBASIS-SECTION
\(f = 1, \text{ndof} \)
- \text{modelabel(f)} assigned label
- \text{gdim(f)} no. of primitive basis functions
- \text{pbasis(f)} type of DVR

MODE info is “coordinates” in propagation
\(m=1, \text{nmode} \)
- \text{nspfdof(m)} no. of DOFs in mode
- \text{spfdof(n,m)} which DOF is nth mode coordinate
- \text{dofspf(f)} in which mode is DOF f
- \text{subdim(m)} no. of mode grid points
- \text{dim(m,s)} no. of SPFs for mode (and state)
from subroutine zeigdvr (gendvr/zeigdvr.F):

C---
C pointers for ort
C---

zeig=1
do f=1,ndof
 zort(f)=zeig
 zeig=zeig+gdim(f)
endo
tordim=zeig-1

from subroutine genpsi (geninwf/genpsi.F):

C---
C move initially populated spf to be 1st in list
C---
do s=1,nstate
 do m=1,nmode
 do n=1,nspfdof(m)
 f=spfdof(n,m)
 pop=isbaspar(4,f,s)
 if (pop.ne.1 .and. dimf(f,s).gt.0 .and. sbasis(f).ne.3) +
 then
 call swapspf(spf1d(zspf1d(f,s)),workc,pop,gdim(f), +
 + dimf(f,s))
 endif
endo
do s=1,nstate
endo
Read-Write files

3 files:
dvr DVR (primitive basis set)
oper Operators
restart Wavefunction and propagation

File Structure:
File version number
System Information (dvrdef, grddef, psidef)
RW File Information
RW Data

Interface routines:
gendvr/wrdvr.F mctdh/rddvr.F
genoper/wroper.F mctdh/rdoper.F
mctdh/iorst.F (wrrst, rdrst)
Can read information separately from data.

System information interface routines:
mctdh/iodvrdef.F mctdh/iogrdddef.F
mctdh/iopsidef.F
from subroutine runinwf (geninwf/runinwf.F):

C---
C Read DVR data needed to build wavefunction (see rddvr.f for details)
C---
call zerovxl(dvrdata,nrwdva)
dvrdata(1)=.true.
dvrdata(2)=.true.
dvrdata(5)=.true.
dvrdata(6)=.true.
dvrdata(7)=.true.
dvrdata(8)=.true.
dvrdata(9)=.true.
chkdvr=2
call rddvr(mr(mrort),mr(mrtrafo),rdum,rdum,mc(mchin),mc(mcrueck),+
 mi(mifftfak),mi(mijsp),mi(mijsph),rdum,chkdvr)

C---
C Read data needed by the operator
C---
chkdvr=2
chkgrd=2
call rdoper(mr(mrhops),chkdvr,chkgrd)

chkdvr, chkgrd, chkpsi flags:
0 read and do nothing
1 read and store info
2 read and check against stored info
3 read and check as subset of system (dvrdef only)
Updating RW files: Version numbers

-ver keyword produces information on program version

```
linux1: 80 > mctdh82 -ver
```

****** Source code version ******

Program Version : 8

Release : 2
Revision : 2

Heidelberg PRCS repository no. : $ProjectVersion$

Compiled: Mon Jul 16 11:41:54 BST 2001 ; Host: linux1

Included surfaces: none

Default operator-path: /home/graham/mctdh82.2/operators

In include/versions.inc is the version number parameter (projver = 8.2002d0)

This is written at the beginning of every RW (and data) file to identify the format.
If changes are made to RW files (or data files), e.g. new information output, this number must be increased. Then, to maintain backward compatibility edit routine that reads edited file using the version number as control structure.

e.g. in subroutine dvrinfo (mctdh/rddvr.F)

```
rewind(idvr)
read(idvr) filever(idvr)

file='Dvr'
call zeroxvi(chkerr,nerr)
call rddvrdef(idvr,chkdvr,ndof1,fidvr)
call chksyserr(file,lerr)
if (lerr) return

read(idvr) buffer

if (filever(idvr) .ge. 8.2002d0) then
   read(idvr) ortdim,dvrdim,fftdim,expdim,sphdim
else
   read(idvr) ortdim,dvrdim,fftdim,sphdim
endif
```

Files are identified by a channel, idvr, ioper, ichk, etc. The file versions are stored in filever(idvr), etc.
Modules and workspace

Subroutines grouped together in files as modules, e.g. in propwf

hphi.F Operation of H on spfs.
mfields.F Building the mean fields
output.F Controls the output of information
function.F Calculating A, ϕ
daten.F Calculates data such as energies and state populations for output

Work space may be used in a module:
mc(mcworkc) → workc(workcdim)
mr(mcworkr) → workr(workrdim)

This is assigned in e.g.

```
subroutine wkhphi

implicit none

#include "global.inc"
#include "propwf.inc"
```

C assign workspace used in module

```
workcdim=max(workcdim,totphidim)
workrdim=workrdim
workidim=workidim
workldim=workldim
```

In zeigX calls to each module work allocation routine (via subroutine wkX) are made. Maximum workspace workcdim etc. stored in include files.
Adding keywords

Include files allow easy addition of new keywords. Each section in .inp file has a separate IO routine,

RUN-SECTION mctdh/einrun.F
SBASIS-SECTION mctdh/einsbas.F
PBASIS-SECTION gendvr/einpbas.F
OPERATOR-SECTION genoper/einoper.F
INIT_WF-SECTION geninwf/eininwf.F
INTEGRATOR-SECTION propwf/einint.F

In mctdh/einrun.F, loop starts

C---
C READ KEYWORDS:
C---
10 continue
 call rdinpfiin(keyword, keyorig, inptit, lc, ic, iz, ierr, maxkey)
 message = inptit
 call cntrl(keyword(1), lc(1), ierr)
 i=1
15 continue
 if (keyword(i).eq.'end-run-section') then
 goto 20
and continues with entries such as

```fortran
else if( keyword(i) .eq. 'geninwf' ) then
    lruninwf=.true.

else if (keyword(i) .eq. 'readdvr') then
    lrddvr=.true.
    if (keyword(i+1) .eq. '=' ) then
        i=i+2
        dname=keyorig(i)
        dlaenge = lc(i)
        call abspath(dname,dlaenge)
    endif
```

Add new keyword to list with options, add new flags to relevant include files. Edit code locally.
Analysing the data files

Stand alone files.

psi Wavefunction
gridpop one-dimensional densities
check information on propagation (state populations, natural orbital populations, expectation values, etc.
auto autocorrelation file
....
pes PES file generated by -pes
...

Similiar in structure to RW files:
File version number
System Information (dvrdef, grddef, psidel)
Data File Information
Data

Either
● General program, e.g. to plot natural orbitals or
● Specific program for a particular property / system

ANALYSE programs provide interfaces / memory handling routines.
Updating of files can take place without destroying programs.
The ANALYSIS program

The standard programs can be used directly, or via plot scripts. Even easier is the ANALYSIS interface.

Uses interactive menus and GNUPLOT to visualise data.

```
linux1: 77 > analysis82
```

**

THE HEIDELBERG MCTDH PROGRAM ANALYSIS PACKAGE

- Program Version : 8
- Release : 2

**

Present directory is: /home/graham/runs/allenex/allx2d

0 = stop
1 = list / change directory
2 = analyse convergence
3 = analyse integrator
4 = analyse results
5 = analyse system evolution
6 = analyse potential surface
7 = compare calculations

Option 1 allows browsing of directories. Simply type name of directory using relative or absolute path.
Select an option, e.g.

2

*** Analyse convergence ***
0 = return to main menu
1 = check orthonormality of spfs in psi file
2 = check orthonormality of spfs in restart file
3 = plot populations of natural orbitals
4 = plot populations of grid edges
5 = plot time-evolution of norm of wavefunction
6 = norm of wavefunction on restart file

99 = print last screen output
100 = change printer (lpr)

Again select an option or return to main menu.

Select again from main menu

4

*** Plot Results ***
0 = return to main menu
1 = Plot autocorrelation function
2 = Plot Fourier Transform of autocorrelation function
3 = Plot spectrum from autocorrelation function
4 = Plot eigenvalues from matrix diagonalisation
select to plot the autocorrelation function

1

0 = stop
1 = plot to screen
2 = print plot
3 = save plot to a postscript file
4 = save plot to a gnuplot file (use after 1 or 2)
5 = save data to an xyz file

10 = change plot task (plot Absolute values)
30 = change time bounds
40 = show time info
70 = set Y-range for plot (auto)
80 = change coordinate units
90 = change Y-axis units (au)

150 = toggle grid (off)
240 = toggle key (on)
250 = toggle show points (off)
260 = toggle stick spectrum (off)
270 = toggle smooth curve (off)

900 = toggle gnuplot output format (on)
910 = change printer (lpr)
920 = change GNUplot command

10

1 = plot Real values
2 = plot Imaginary values
3 = plot Absolute values

etc....
from subroutine analres (analyse/analysis.F):

 write(6,*)
 write(6,'(a)') ' *** Plot Results ***'
 write(6,'(a)') ' 0 = return to main menu '
 write(6,'(a)') ' 1 = Plot autocorrelation function'

 read(5,*) task

 if (task .eq. 0) then
 go to 999
 else if (task .eq. 1) then
 inquire(file=name(1:laenge)//'/auto',exist=lexist)
 if (lexist) then
 line='rdauto'/aversion
 s=slen(line)
 line=line(1:s)//'-inter -i '//name(1:laenge)
 s=slen(line)
 line = line(1:s)//char(zeroi)
 call excmd(line)
 else
 write(6,'(/,a)') 'Needs an auto file from a propagation run'
 endif
 endif

Effectively calls program
rdauto -inter
using data in directory "name"

Easy to add new items to menus
Writing a new program

aglobal.inc usually needed

analyse/adefault.F sets defaults

analyse/plotutils.F (+ plot.inc) contains interactive plotting routines.

See e.g. analyse/rdauto.F or analyse/rdeigval.F for simple programs that read / plot data from a file.

analyse/rdfiles.F contains IO routines for data files.

analyse/zeigausw.F and analyse/memausw.F control memory allocation

analyse/template.F provides template for writing new program.

C---
C!!!
Setting flags enables program to set up memory requirements / pointers

C--

C!!
C Declare files to be read
C set flag to .true. if file is to be read
C
C lrddvr DVR file
C lrdoper OPER file
C--

lrddvr=.false.
lrdoper=.false.

Which MCTDH arrays are to be used?

C--

C!!
C Declare resources required (other than those needed to read a file)
C
C ncomp : no. of comparison data sets to be used.
C See auswutil.F for details of use of comparison sets
C lpsi : wavefunction
C lpsi1 : second wavefunction
C lpsigrd : wavefunction to be used in grid representation (rather
C than spf)
C ldmat : density matrices for psi
C--
ncomp=0
lpsi=.false.
lpsi1=.false.
lpsigrd=.false.
ldmat=.true.
Select file to be read

C---
C!!!
C open input and output data files
C
C use standard channels if possible
C irho : gridpop file
C ipsi : psi file
C iaut : auto file
C ichk : check file
C iaus : output file
C---
filename=filein(1:laein)
 open(ichk,file=filename,form='unformatted',status='old',err=1000)

Due to selections made, pointers for dicht3 are set, so
in subroutine receiver

C---
C!!!
C provide arguments of pointers to arrays needed for analysis
C e.g. mc(mcpsi) for psi array
C---
call substpop(mr(mrdicht3))

.....
.....

C***
subroutine substpop (dicht3)
implicit none

#include "aglobal.inc"
#include "analyse.inc"
#include "plot.inc"
Read check file in a loop, and store in array for interactive plotting.

C---
C read check file
C---

time=tinit
ndata=0
100 continue
lrdchk(1)=.true.
lrdchk(2)=.true.
lrdchk(3)=.false.
call rdchk(ichk,ecorr,etot,spop,dicht3,rdum)
if (lend) go to 200

In different context, rdum can be replaced by an array, and lrdprop(n)=.true. can be set to read different properties.

if (linter) then
ndata=ndata+1
if (ndata .le. maxdata) then
pltime(ndata)=time/fs
do n=1,nstate1
 pldata(ndata,n)=spop(n)
enddo
endif
else
write(6,'(f8.3,3e20.8)') time,(spop(n),n=1,nstate1)
endif
Basic interactive plotting loop is then:

250 continue
 call plotmenu(task,plottask,plotdim)

C---
C do task
C TASK=0 STOP else return to menu
C---
 if (task .gt. 0) then
 if (plottask .eq. 1) then
 nsets=nstate1
 plttitle='State population'
 axislab(1)='Time [fs]'
 axislab(3)='Population'
 endif
 if (lrebound) then
 call databnds(pldata(1,plottask),dimx,dimy,nsets,nplots,
+ maxdata,1,maxsta,1)
 endif
 call dotask(task,plottask,plotdim,pltime,ydum,
+ pldata(1,plottask),dimx,dimy,nsets,nplots,
+ maxdata,1,maxsta,1,xdum,1,plttimendata)
 goto 250
 endif