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Abstract

This review covers the multiconfiguration time-dependent Hartree (MCTDH) method, which is

a powerful and general algorithm for solving the time-dependent Schrödinger equation. The formal

derivation is discussed as well as applications of the method. Recent extensions of MCTDH are

treated in brief, namely MCTDHB and MCTDHF, for treating identical particles (bosons and

fermions), and the very powerful multi-layer (ML-MCTDH) formalism. Compact representations

of potential energy surfaces (PES) are also treated, as the representation of a PES becomes a

major bottleneck when going to larger systems (9 or more dimensions) while employing a full

dimensional, complicated, and non-separable PES. As applications of MCTDH we discuss the

calculation of photo-ionization and photo-excitation spectra of the vibronically coupled systems

butatriene and pyrazine, respectively, and the infra-red spectrum of the Zundel cation (protonated

water dimer) H5O
+
2 .
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I. INTRODUCTION

Quantum dynamics simulations are an essential tool for understanding experiments which

probe matter at an atomic level. Quantum chemistry calculations provide the potential

energy surfaces (PES) on which the nuclei of a molecular system move, and this motion is

studied by quantum dynamics.

Over the last two decades, there has been an impressive progress in the field of molecular

quantum dynamics. A recent review article by Bowman et. al.1 reflects the state of the art

of computing vibrational energy levels. See also Refs.2–5. But molecular quantum dynamics

is much more than computing vibrational energy levels. It also covers inelastic and reactive

scattering off molecules or surfaces, the study of intramolecular vibrational energy redistri-

bution (IVR), simulations of pump-probe experiments, control, and more. The computation

of vibrational energy levels is still often done by solving the time-independent Schrödinger

equation, but for most of the other problems a time-dependent approach has proven to be

superior. Even for computing vibrational spectra, the time-dependent approach may be of

advantage, namely if there are very many lines such that only an envelope is to be computed

or if some high lying states of a larger molecule are of interest. (See the examples discussed

in section IV.) For even larger systems, trajectory based quantum methods are an option.

The most prominent one of those is the multiple spawning method of Martinez6.

If the Hamiltonian is time-dependent, e. g. because of an external laser field, the

time-dependent version of the Schrödinger equation must be used. For time-independent

Hamiltonians, however, time-dependent and time-independent approaches are equivalent.

Which approach is to be preferred is largely a matter of numerical efficiency. The time-

dependent Schrödinger equation has one variable more, time. On the other hand, the

time-dependent equation has a simpler structure, an initial value problem, as compared

to the time-independent one, an eigenvalue problem. In a time-dependent approach one is

restricted to investigate the properties of an initial state only, whereas a full diagonalization

of the Hamiltonian provides one with all information possible. This is actually an advantage

of the time-dependent approach because one usually is not interested in all state-to-state

transitions (the full S-matrix) and the restriction makes a given problem easier to solve.

The last three decades have shown an impressive success of the time-dependent approach7

to molecular quantum dynamics, in particular when larger molecules are treated.
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We note in passing that, after all eigenstates up to a sufficiently high energy are computed,

one may expand an initial wave packet in these eigenstates and propagate it by using a well

known expression. This has been done (see e. g. Ref.8), but only for small systems (up to

4 dimensions, typically), because of the poor scaling of the method. It is one of the main

advantages of the time-dependent approach, that eigenstates are avoided.

This article reviews the multiconfiguration time-dependent Hartree (MCTDH) method,

which is an efficient algorithm for solving the time-dependent Schrödinger equation (and

due to recent developments it can compute eigenstates as well). MCTDH is a complicated

algorithm and currently there seem to exist three implementations, the Heidelberg code,

the Bielefeld code of Uwe Manthe, and the Las-Cruces code of Haobin Wang. And for the

special case of identical particles there are several new codes coming up, MCTDHB ones for

bosonic and MCTDHF ones for fermionic systems. In the present article we will discuss the

MCTDH algorithm as it is implemented in the Heidelberg code9, and also the applications

discussed are ones performed with the Heidelberg code.

The paper is structured as follows. In the next section we derive the MCTDH equations

of motion and discuss their properties. We also briefly discuss extensions of MCTDH,

namely MCTDHB, MCTDHF, and ML-MCTDH. The first two are, as already mentioned,

for treating indistinguishable particles, whereas the multilayer (ML) extension of MCTDH

allows one to tackle very large systems with hundreds or even thousands of degrees of

freedom.

In the following section, we discuss potential representations. If there are five atoms (9D)

or more, one cannot simply evaluate the potential on all grid-points, there are far too many.

One must represent the potential in a compact form which is easy to apply to the wave

function. This is a problem which is not unique to MCTDH, it appears for other methods

as well where it is known as quadrature problem. POTFIT is an algorithm which brings

the potential in a compact form similar to the MCTDH wave function. However, POTFIT

cannot be used for large product grids and the more approximate n-mode representation,

also known as high dimensional model representation (cut-HDMR) or cluster expansion, is

therefore discussed as well.

We then turn to applications of MCTDH. First we discuss the calculation of vibronic

spectra, namely the photo-ionization spectrum of butatriene and the photo-excitation spec-

trum of pyrazine. Then, we investigate the infra-red spectrum of the Zundel cation H5O
+
2 ,
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where solving the potential representation problem was a major part of the research. Finally

we summarize our findings.

II. MCTDH THEORY

A. The MCTDH equations of motion

The aim is to solve the time-dependent Schrödinger equation

iΨ̇ = H Ψ (1)

(we use a unit system with ~ = 1 throughout). The most straightforward way to solve

this equation is to represent the wave function and Hamiltonian in basis set expansions

where multi-dimensional basis functions are built from a products of one-dimensional time-

independent ones, {χ(κ)
j }

Ψ(q1, . . . , qf , t) =

N1∑
j1=1

· · ·
Nf∑
jf=1

Cj1...jf (t)

f∏
κ=1

χ
(κ)
jκ

(qκ) . (2)

Here f specifies the number of degrees of freedom, q1, . . . , qf are nuclear coordinates, Cj1...jf

denote time-dependent expansion coefficients, and Nκ is the number of basis functions used

for representing the κth degree of freedom (DOF). The resulting method is easy to code and

efficient for small systems in particular when a discrete variable representation (DVR)10,11 is

taken as basis, because this makes the representation of the potential energy surface (PES)

diagonal. However, this so called standard method is plagued by strong exponential scaling

as the number of coefficients increases like N f . This limits the method to smaller problems.

In the MCTDH scheme12–16 the scaling is softened by introducing an intermediate,

smaller, but now time-dependent basis of so-called single-particle functions (SPFs). The

ansatz for the MCTDH-wavefunction reads

Ψ(q1, . . . , qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

ϕ
(κ)
jκ

(qκ, t)

=
∑
J

AJ ΦJ (3)

with nκ usually being considerably smaller than Nκ. Here the configuration, or Hartree-

product, ΦJ is an f -dimensional product of SPFs, implicitly defined by Eq. (3). J =
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(j1 . . . jf ) is a composite index, the symbol AJ ≡ Aj1...jf , often called A-vector, denotes the

MCTDH expansion coefficients, and the ϕ
(κ)
jκ

are the SPFs, which in turn are represented as

linear combinations of the primitive basis

ϕ
(κ)
jκ

(qκ, t) =
Nκ∑
iκ=1

c
(κ)
iκ jκ

(t) χ
(κ)
iκ

(qκ) . (4)

Since both the coefficients and the SPFs are time-dependent, the wave function represen-

tation (3) is not unique. Uniquely defined equations of motion (EOM) can be obtained by

imposing additional constraints on the SPFs13–16. Hereby it can be achieved that initially

orthonormal SPFs remain orthonormal for all times. The constraints read

〈ϕ(κ)
j (0)|ϕ(κ)

l (0)〉 = δjl (5)

〈ϕ(κ)
j (t)|ϕ̇(κ)

l (t)〉 = −i〈ϕ(κ)
j (t)|g(κ)|ϕ(κ)

l (t)〉 , (6)

were g(κ) denotes a hermitian but otherwise arbitrary constraint operator. For sake of

simplicity we will restrict the discussion here to the simplest and most often used choice

g(κ) = 0.

1. Mean-fields, density matrices and projector

To proceed we introduce single-hole functions

Ψ
(κ)
l = 〈ϕ(κ)

l |Ψ〉 =
∑
Jκ

AJκl

∏
ν 6=κ

ϕ
(ν)
jν
, (7)

where Jκl denotes a composite index J with the κth entry set at l, and Jκ is similar to J

but with the κth entry removed. The single-hole functions allow us to write the total wave

function as

Ψ =
∑
l

ϕ
(κ)
l Ψ

(κ)
l (8)

for any degree of freedom κ. This expansion is used when deriving the equations of motion

for the SPFs.

Next we define mean field

〈H〉(κ)jl = 〈Ψ(κ)
j |H |Ψ

(κ)
l 〉 (9)

and density matrices

ρ
(κ)
jl = 〈Ψ(κ)

j |Ψ
(κ)
l 〉 =

∑
Jκ

A∗Jκj AJ
κ
l
. (10)
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Note that the mean-field matrix elements are operators on the κth DOF. Finally, we define

the MCTDH projector

P (κ) =
nκ∑
j=1

|ϕ(κ)
j 〉〈ϕ

(κ)
j | , (11)

and split the Hamiltonian into separable and correlated terms

H =

f∑
κ=1

h(κ) +HR , (12)

where h(κ) acts only on the κth DOF and the residual part, HR, includes all correlations

between the DOF.

2. Equations of motion

The MCTDH equations of motion are derived by applying the Dirac-Frenkel variational

principle to the ansatz Eq. (3). After some algebra one obtains13,14

iȦJ =
∑
L

〈ΦJ |H |ΦL〉AL , (13)

ϕ̇
(κ)
j =

(
1− P (κ)

) [
h(κ)ϕ

(κ)
j +

∑
k,l

(
ρ(κ)−1)

jk
〈HR〉(κ)kl ϕ

(κ)
l

]
. (14)

The MCTDH equations conserve the norm and, for time-independent Hamiltonians, the

total energy. This follows directly from the variational principle14. MCTDH contains Time-

Dependent Hartree (TDH) and the standard method as limiting cases. MCTDH simplifies

to TDH when setting all nκ = 1. Increasing nκ recovers more and more correlation, until

finally, for nκ = Nκ, the standard method is used.

Diagonalizing the matrix ρ(κ) yields the natural populations and natural orbitals12–14.

The first are defined as the eigenvalues of ρ(κ) and the latter are obtained by transforming

the SPFs with the eigenvector matrix of ρ(κ). Natural populations are a measure of the

contribution of the related natural orbitals to the representation of the wave function. Small

natural populations indicate that the MCTDH expansion converges, and this provides an

important internal check on the quality of the computed solution. For vanishing eigenvalues,

the hermitian and positive semi-definite density matrix will become singular. How to solve

the resulting numerical problem is discussed in Refs.13,14.
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The EOMs (13,14) are a set of non-linear coupled differential equations. Note that Ȧ

depends on ϕ through the matrix elements of H and ϕ̇ depends on A through the mean fields.

One may use an all purpose numerical integration scheme (e. g. Adams-Bashfort-Moulton

predictor-corrector, Runge-Kutta, etc.) to solve these equations. However, to speed up the

integration a special dedicated integration scheme has been developed, the so called constant

mean field (CMF) integration scheme14,16–18.

3. Electronic states

The motion of the molecular nuclei may not evolve on a single Born-Oppenheimer poten-

tial energy surface, and a multi-state formulation may be necessary. The MCTDH algorithm

can be applied straightforwardly to systems where more than one electronic state is included.

One simply chooses one extra DOF, the κeth say, to represent the electronic manifold19. The

coordinate qκe then labels the electronic states, taking only discrete values qκe = 1, 2, . . . , σ,

where σ is the number of electronic states under consideration. The number of single-particle

functions for such an electronic mode is set to the number of states, i.e. nκe = σ. The equa-

tions of motion (13,14) remain unchanged, treating nuclear and electronic modes on the

same footing. This is called the single-set formulation, since only one set of SPFs is used

for all electronic states.

Because the motion on the included electronic potential energy surfaces can be vastly

different, one may think of more efficient ways to include electronic states. The so-called

multi-set formulation employs different sets of SPFs for each electronic state20,21. In this

formulation the wave function Ψ is expanded in a set, {|α〉}, of electronic states:

|Ψ〉 =
σ∑

α=1

Ψ(α) |α〉 (15)

where each state function Ψ(α) is expanded in MCTDH form (3). The derivation of the

equations of motion is similar to above, except that extra state labels are introduced on the

various quantities such as mean fields and density matrices. For details see Refs.14,20,21. The

single-set formalism is of advantage if the dynamics in the different electronic states is similar,

e. g. when the surfaces are almost parallel. The more complicated multi-set formalism is

more efficient when the dynamics on the various diabatic states is rather different. In most

cases multi-set is the preferred scheme.
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B. MCTDHB and MCTDHF generalizations of MCTDH

The MCTDH method does not take into account particle exchange symmetry, it treats

all nuclei as distinguishable. However, when turning to investigate the dynamics of identical

particles, bosons or fermions, the particle exchange symmetry must be included. To simplify

the discussion, we assume in the following one dimensional spin-polarized particles. Hence

the number of particles is identical to the number of DOF, f . As the exchange symmetry

is between particles and not among DOF, one needs mode combination to describe two- or

three-dimensional identical particles within MCTDH. Mode combination will be discussed

in the following section.

As now all particles are identical they must be described by an identical set of SPFs.

Hence one needs to propagate only one set of SPFs and the index κ is to be dropped

from Eq. (14). To arrive at a fully (anti-) symmetric wave function, the A-vector has to

be (anti-) symmetrized, i. e. Aj1...jf remains unchanged (changes sign) when two of its

indices are interchanged. As the Hamiltonian is symmetric, an initially (anti-) symmetrized

wave function keeps its symmetry during propagation. In fact, a loss of symmetry is an

indication that the number of SPFs included in the calculation is too small. With this

simple symmetrization scheme, implemented in the Heidelberg MCTDH package9, a couple

of small but highly correlated bosonic systems was successfully investigated22–26.

More powerful algorithms and codes can be obtained by re-deriving MCTDH for identical

particles from scratch. This leads to the MCTDHB (MCTDH for bosons) and MCTDHF

(MCTDH for fermions) methods. The starting point is a slight modification of the ansatz

Eq. (3) which we write compactly as

Ψ(q1, . . . , qf , t) =
∑
J

AJ(t) ΦJ(q1, . . . , qf , t) (16)

In contrast to Eq. (3) the configurations ΦJ are no longer Hartree products but symmetrized

products, so called permanents, or anti-symmetrized products, the well known Slater deter-

minants. Among others, this shortens the length of the A-vector. The number of configura-

tions is nf for distinguishable particles, butf + n− 1

f

 =
(f + n− 1)!

f ! (n− 1)!
(17)
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for bosons and n
f

 =
n!

f ! (n− f)!
(18)

for fermions. Note that for fermionic systems the number of SPFs, n, must not be smaller

than the number of particles, f . For n = f MCTDHF turns into Hartree-Fock. Similarly,

for n = 1 MCTDHB becomes equivalent to the Gross-Pitaevskii approach27,28.

The equations of motion remain virtually unchanged. The A-vector is still propagated

according to Eq. (13), but the evaluation of the Hamiltonian matrix elements is changed as

Φ is now a permanent or determinant. Similarly, the EOM for the SPFs is still given by

Eq. (14) but with the modification that there is only one set of SPFs, i. e. there is no longer

an index κ.

The Hamiltonian of bosonic and fermionic systems is often determined by one- and two-

body forces alone

H =

f∑
i=1

h(qi) +

f∑
i<j

W (qi, qj) (19)

where h denotes the sum of one-particle kinetic energy and a one-particle interaction po-

tential, e. g. a confining potential. The two-particle potential, denoted by W , is usually

a Feynman contact potential (δ-interaction) or a Coulomb potential. This special form of

the interaction allows to write the mean-field (Eq. (9)) slightly more explicit, leading to the

EOM29

iϕ̇j = (1− P )

[
hϕj +

∑
klrs

{ρ−1}jk ρklrsWlr ϕs

]
, (20)

where

Wlr(q, t) =

∫
ϕ∗l (q

′, t)W (q, q′)ϕr(q
′, t)dq′ . (21)

The symbol ρklrs denotes a two-particle density.

Derivation of the MCTDHB method and applications of this method are discussed in

Refs.29–32. The MCTDHF method was developed by three groups independently33–35. MCT-

DHF has been used to solve problems of quantum chemistry35,36, but most applications of

MCTDHF deal with molecules in strong laser fields33,37–39. The nuclear geometry is kept

frozen but the electrons driven by the laser field travel large distances. Very recently an ap-

proach was developed to treat nuclear and electronic motion simultaneously by an extension

of MCTDHF40. Ionization of diatoms was studied with this new approach.
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C. Mode combination

Although MCTDH can treat larger systems than the standard method, Eq. (2), it still

shows an exponential scaling with the number of DOF. The base of exponentiation, however,

is reduced from N to n because the two methods scale like nf and N f , respectively. The

base can be further reduced by introducing an algorithm called mode combination. The

SPFs do not need to depend on a single DOF, they may as well depend on a collection

of DOF. To this end we introduce combined coordinates, also called logical coordinates or

particles,

Qκ = {q1,κ, · · · , qdκ,κ} (22)

where κ now runs over the particles and the κth particle (logical coordinate) consists of dκ

physical coordinates. The ansatz for the wave function is virtually unchanged, except for

expanding the wave function now in multi-dimensional SPFs

Ψ(q1, . . . , qf , t) ≡ Ψ(Q1, . . . , Qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Aj1...jp(t)

p∏
κ=1

ϕ
(κ)
jκ

(Qκ, t) (23)

where p denotes the number of particles. The equations of motion (13,14) remain unchanged

except for replacing the number of DOF, f , with the number of particles, p. Note that the

operators h(κ) operate now on particles (combined modes) rather than on DOF.

Mode combination leads to a considerably shorter A-vector but the SPFs are now rep-

resented in multi-dimensional primitive product basis sets (or DVR-grids) and thus harder

to propagate. Typical choices for the degree of contraction are d=1, 2, or 3. Higher order

contractions are rare because they make the propagation of the SPFs too elaborate.

The effect of mode combination can be very substantial. To understand this let us discuss

how much data is needed to represent one wave function. Fewer data leads, of course, to

less memory consumption. But the CPU-time also depends on how much data is needed to

represent one wave function, because this amount of data must be processed at each time

step of the propagation.

Let us assume, for sake of simplicity, that all DOF have same grid length N and numbers

of SPFs n. Then a wave function in standard method format takes N f data points, and

an MCTDH wave function takes fnN + nf data points, where the first summand counts

the data needed to represent the SPFs and the second stands for the A-vector. With mode

combination the latter equation turns into pñÑ + ñp, where a tilde is added to N and n
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to distinguish particle grid sizes from one-dimensional ones and similar for the numbers of

SPFs. (We will drop the tilde later, if no confusion is possible.) Obviously Ñ = Nd, but

there is no strict rule how ñ scales, this depends on the case. However, the estimate ñ = dn

was found useful as a rule of thumb. An example shall demonstrate the importance of mode

combination. Let us assume that there are f = 15 DOF, N = 16 grid points and n = 5

SPFs for each DOF. A standard method wave function then takes 1.15× 1018 data points,

MCTDH without mode combination 3.05×1010, and MCTDH with combining always three

DOF, i. e. d = 3, p = 4, and using ñ = 15, takes 1.07×106 data points. The first problem is

clearly infeasible, straight MCTDH would require a super-computer to solve this problem,

but MCTDH with mode combination is easily doable on a normal PC. Note that the base

of the exponentially scaling part drops from N to n to ñ(1/d) in general, or from 16 to 5 to

2.5 for our example.

The number of SPFs needed for convergence depends on the combination scheme and

the question which DOF should be combined to build a particle is a delicate one. One

should combine those DOF between which a strong coupling exists. Then their correlation

is treated on the SPF level and does not appear in the configuration interaction part leading

to fewer SPFs and hence to a shorter A-vector. A more technical rule states that all particle

grids should have roughly the same size. Too large particle sizes must be avoided, because

if one over-combines such that the propagation of the SPFs becomes the major part of

the total effort, the MCTDH propagation becomes less efficient. As a rule of thumb, the

number of data points needed to represent the SPFs should be smaller than the A-vector,

i. e. pñÑ < ñp.

D. Multi-layer MCTDH

The introduction of mode combination was a very important step when going to larger

systems. But the exponential increase of the particle grid with the combination order d

limits the combination order in general to 3, and in suitable cases (small DOF-grids) to 4 or

5. However, we know a method to efficiently propagate multi-dimensional wave functions:

MCTDH! Hence one may use MCTDH rather than the standard method to propagate the

SPFs of an MCTDH calculation. And one can go on and use again MCTDH to propagate

the SPFs of the set of secondary MCTDH calculations, and so on. This is the general idea
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of the multi-layer MCTDH (ML-MCTDH) approach. ML-MCTDH was first formulated

and implemented by Wang and Thoss41 (see also Ref.15 where this approach is called cas-

cading). The ML-MCTDH algorithm was re-formulated by Manthe42,43 in a recursive way,

which allows to treat an arbitrary number of layers. This recursive formulation was used to

implement44 ML-MCTDH in the Heidelberg MCTDH package9.

The ML-MCTDH equations of motion are essentially those of MCTDH, i. e. an equation

similar to (14) applies to all SPFs of all layers, but the specific form of projector, density

matrix, and mean-field depends on the particular layer. In detail the equations are very

cumbersome because several additional indices are needed to specify the layer and the path

through the ML-tree. We refer the interested reader to Refs.42,44.

An ML-MCTDH tree is an extension of an MCTDH mode combination scheme. A

graphical representation42 of the tree is illuminating. Fig. 1 shows a collection of trees. A

circle stands for a set of coefficients (A-vector(s)) and a square for a set of (time-independent)

primitive basis functions (or DVR grids). A standard method tree is shown in Fig. 1a. Here

the primitive basis functions are directly connected with the coefficients (see Eq.(2)). Fig. 1b

displays an MCTDH tree. The uppermost circle stands for theA-vector which is connected to

the coefficient vectors (see Eq. (4)) of the SPFs, which in turn are connected to the primitive

basis sets. Fig. 1c shows a tree for an MCTDH calculation with mode combination. Here

the SPFs depend on more than one DOF (two in the present example). Fig. 1d shows an

ML-MCTDH tree. The uppermost SPFs (second level) are expanded into the SPFs of the

following layer (third level) which in turn are expanded in the primitive basis sets. We call

this a three-layer calculation because the circles appear on three different levels. MCTDH

is thus a two-layer calculation and the standard method a one-layer one. ML-MCTDH can

have more layers than three and can be used together with mode combination. An example

of such a case is displayed in Fig. 1e. For the construction of a tree similar rules apply as

for constructing a combination scheme (see above).

MCTDH is very efficient if the modes are not particular strongly correlated. Then a small

number of SPFs suffices for convergence. Moreover, MCTDH is very fast if a high accuracy

is not envisaged. But MCTDH becomes costly if very accurate results are desired as then

many SPFs are needed. ML-MCTDH is MCTDH to the extreme. It can be amazingly fast

if one can tolerate small errors but a highly accurate convergence is difficult to achieve. A

careful analysis of the convergence properties of ML-MCTDH is provided in Ref.44 and a
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(a) (b)

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

(c) (d)

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

(e)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

FIG. 1: Tree structures of wave functions. (a) Standard method wave function tree, where the wave

function is expanded directly into a primitive (time-independent) basis denoted by squares. The

circle symbolizes the expansion coefficients. (b) MCTDH wave function tree where the wavefunction

is first expanded into a basis of SPFs, which, in turn, are expanded into the primitive basis. (c)

MCTDH with mode combinations. The SPFs are expanded in two-dimensional primitive basis

sets. (d) ML-MCTDH wave function tree. The (two-dimensional) SPFs of the second layer are

expanded into (one-dimensional) SPFs of the third layer which in turn are expanded into the

primitive basis. This case is similar to case (c), except that an additional layer is introduced rather

than using combined primitives. (e) ML-MCTDH wave function tree with three and four layers

and with mode combination.
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demonstration of the efficiency of ML-MCTDH is given in section IV A when discussing the

pyrazine example. The most impressive ML-MCTDH calculations to date, including up to

several thousands of degrees of freedom, are discussed by Wang and Thoss45–51. The latter

applications are of system/bath type. A small system interacts with a (often harmonic)

bath of thousands of degrees of freedom. The interaction with a single bath mode is rather

weak, but the interaction of the system with the bath as total is strong. Such problems are

very suitable for ML-MCTDH.

The grouping of modes on which mode combination and ML-MCTDH relies is incompat-

ible with (anti-)symmetrization. Hence ML-MCTDH cannot treat identical particles, e. g.

electrons. To overcome this limitation Wang and Thoss have developed52 an alternative

MCTDH ansatz which is based on second quantization. As creation/annihilation operators

can be grouped, this ansatz allows for an ML extension.

E. Relaxation and improved Relaxation

The generation of a ground–state wavefunction is conveniently done by energy

relaxation53. An initial wave packet, often a Hartree product, is propagated in negative

imaginary time by H − E(t), where E(t) denotes the expectation value of H.

Ψ̇ = −(H − E(t))Ψ with E(t) = 〈Ψ(t) |H |Ψ(t)〉 . (24)

The energy E can be interpreted as a Lagrange parameter introduced to keep the norm of Ψ

constant (we assume Ψ to be normalized). One may drop E(t) from the differential equation

and re-normalize Ψ periodically. Differentiation of E(t) leads to

Ė = −〈Ψ(t) |(H − E(t))2 |Ψ(t)〉 . (25)

Hence the energy decreases with relaxation time and converges if the variance vanishes, i. e.

if the wave function becomes an eigenstate of H. Usually this will be the ground state,

only if the initial state is orthogonal to the ground state the algorithm may converge to an

excited state.

Relaxation works well if the initial state Ψ has a reasonable overlap with the ground

state and if the ground state is well separated. However, relaxation may converge slowly if

the energy of the first excited state, E1, is close to the ground state energy E0. To damp
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out the contributions from the first excited state a relaxation time of about 20/(E1−E0) is

required. (Note 1 eV · 1 fs = 1.519~).

The relaxation can be accelerated and excited states can be computed as well, if the

MCTDH A-vector is not determined by relaxation but by diagonalization. This variant is

called improved relaxation54. The algorithm can be derived via a standard time-independent

variational principle δ
{〈

Ψ
∣∣H∣∣Ψ〉− constraints

}
= 0, i. e.

δ
{〈

Ψ
∣∣H∣∣Ψ〉− E(∑

J

A∗J AJ − 1
)
−

f∑
κ=1

nκ∑
j,l=1

ε
(κ)
jl

(〈
ϕ
(κ)
j |ϕ

(κ)
l

〉
− δjl

)}
= 0 (26)

The first Lagrange parameter, E, ensures that the A-vector is normalized and the ε
(κ)
jl

ensures that the SPFs are orthonormal. Improved relaxation may be viewed as a vibrational

MCSCF procedure. Other MCSCF approaches to solve the molecular vibrational problem

are discussed in Refs.2,55–57.

Varying A∗J yields ∑
K

HJK AK = E AJ (27)

Hence the coefficient vector is obtained as an eigenvector of the Hamiltonian matrix repre-

sented in the basis of the SPFs. And a variation with respect to ϕ
(κ)∗

j yields54,58

nκ∑
l=1

〈
H
〉(κ)
jl

ϕ
(κ)
l =

nκ∑
l=1

ε
(κ)
jl ϕ

(κ)
l (28)

This equation can be re-formulated as

−
(
1− P (κ)

) ∑
k,l

(
ρ(κ)−1)

jk

〈
H
〉(κ)
kl

ϕ
(κ)
l = 0 (29)

and one notices that the left hand side is the derivative of an SPF in negative imaginary

time, ∂ϕj/∂τ with τ = −it. (Compare with Eq. (14). The splitting of H into a separable

and residual part can be done here as well.) This suggests that one can obtain the updated

SPFs simply by relaxation. In fact, one can show that

Ė = −2

f∑
κ=1

nκ∑
l=1

‖
nκ∑
j=1

(
ρ(κ)1/2

)
lj
ϕ̇
(κ)
j ‖2 ≤ 0 (30)

holds during relaxation of the SPFs15,16,54. Hence, SPF relaxation will always lower the

energy. As the energy cannot decrease indefinitely, the time derivative of the SPFs must

vanish for τ →∞ and Eq. (29) is satisfied for sufficiently long relaxation times.
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Improved relaxation proceeds as follows: At first an initial state has to be defined. This

state should have a reasonable overlap with the sought state. Then the matrix representation

of the Hamiltonian HJK is built and diagonalized by a Davidson routine59,122. Then the

mean-fields are built and the SPFs are relaxed. After that, HJK is re-built in the space of

the new SPFs and so on till convergence. If the ground state is computed, the selection of the

eigenvector of the Hamiltonian matrix is simple: one takes the eigenvector of lowest energy.

When excited states are to be computed, that eigenvector is taken which corresponds to the

wavefunction which has the largest overlap with the initial state.

An MCTDH propagation always works, whatever the numbers of SPFs. If there are too

few configurations, the propagation will be less accurate but usually still describes the overall

features rather well. This is in contrast to improved relaxation which fails to converge when

the configuration space is too small. There is never a problem in computing the ground state,

but converging to excited states becomes more difficult the higher the excitation energy, or,

more precisely, the higher the density of states.

The improved relaxation algorithm may be used in block form1,60, i. e. one may start with

a block of initial vectors which then converge collectively to a set of eigenstates. Formally

the different wave functions are treated as electronic states of one ’super wavefunction’.

As the single-set algorithm is used, there is one set of SPFs for all wave functions. The

mean-fields are hence state-averaged mean-fields and the Davidson routine is replaced by a

block-Davidson one. The block form of improved relaxation is more efficient than the single

vector one when several eigenstates are to be computed. However, the block form requires

considerably more memory.

Improved relaxation has been applied quite successfully to a number of problems, see e. g.

Refs.54,60–62. For 4-atom systems (6D) it is in general possible to compute all eigenstates of

interest. For a system as large as H5O
+
2 (15D) it was, of course, only possible to converge

low-lying states62.
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III. REPRESENTATIONS OF THE POTENTIAL ENERGY SURFACE

A. The product form

The set-up of Hamiltonian matrix and mean-fields can become a major part of the

MCTDH work to be performed. Multi-dimensional integrals have to be done at every time-

step and these integrals are difficult to perform. A fast algorithm for evaluating the integrals

is needed, otherwise MCTDH cannot be competitive. But this problem is not a problem of

MCTDH alone, it applies to most other quantum dynamical methods, e. g. vibrational con-

figuration interaction (VCI)1,63,64, as well. If there are f = 6 or more DOFs, the evaluation of

the matrix elements 〈ΦJ |H |ΦL〉, where ΦJ denotes a configuration, becomes very time con-

suming (if not impossible), even though they have to be done only once for time-independent

methods. This difficulty is known as quadrature problem.

The computation of the Hamiltonian matrix elements is substantially simplified if the

Hamiltonian is of product form, i. e. if it can be written as

H =
s∑
r=1

cr

f∏
κ=1

h(κ)r , (31)

where h
(κ)
r operates on the κth DOF only and where cr is a number. Then multi-dimensional

integrals can be written as a sum of products of one-dimensional integrals,

〈ΦJ |H |ΦL〉 =
s∑
r=1

cr 〈ϕ(1)
j1
|h(1)r |ϕ(1)

l1
〉 . . . 〈ϕ(f)

jf
|h(f)r |ϕ(f)

lf
〉 , (32)

where the configuration Φ and the composite index J are defined after Eq. (3). An equation

similar to (32) applies to the mean-fields.

As one-dimensional integrals are done very fast, the computation of the Hamilton matrix

elements according to Eq. (32) is much faster than performing multi-dimensional integrals

directly. Storage requirements are also much smaller. Fortunately, kinetic energy operators

(KEO) are often of product form, and when polyspherical coordinates65 are used, a product

form of the KEO is ensured. The potential energy surface (PES), however, is often not of

product form, although a polynomial fit of the potential – when done in the same coordinates

as the dynamical calculation – is of desired product form. (Such a polynomial fit was used

for e. g. the HONO potential66,67.) Finally, model Hamiltonians are often of product form.

In the following we will discuss a method, called POTFIT 14,68,69, which allows to transform
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a general PES to product form, while controlling the error which is introduced by this

re-fitting procedure.

B. The POTFIT algorithm

We assume that a global full dimensional PES exists for the problem under discussion.

We are not concerned with the problem of fitting a global ansatz to ab initio points, we

assume that this has been done. Our concern is the transformation of a general PES to

product form.

A direct way to product form is an expansion of the PES in a product basis. Hence we

approximate some given potential V by

V app
(
q1, . . . , qf

)
=

m1∑
j1=1

. . .

mp∑
jf=1

Cj1...jf v
(1)
j1

(q1) . . . v
(f)
jf

(qf )) . (33)

The basis functions v
(κ)
jκ

are called single-particle potentials (SPP). The expansion orders,

mκ, must be chosen large enough to achieve an accurate expansion. On the other hand they

should be as small as possible, because the numerical effort of the integral calculation scales

linearly with the number of potential terms, i. e. with the product of the expansion orders.

Hence both the expansion coefficients and the SPPs should be optimized to provide the best

approximate potential for a given set of expansion orders.

Before we turn to analyze this optimization problem, we simplify it somewhat. When

DVRs are used to represent the wave functions, one needs to know the potential only at

grid points. This allows us to work in finite dimensional discrete vector spaces. The full

potential is now represented as a tensor

Vi1...if = V
(
q
(1)
i1
, . . . , q

(f)
if

)
, (34)

where q
(κ)
i denotes the coordinate of the ith grid point of the κth grid. The approximate

tensor is written as

V app
i1...if

=

m1∑
j1=1

. . .

mf∑
jf=1

Cj1...jf v
(1)
i1j1

. . . v
(f)
if jf

, (35)

with v
(κ)
ij = v

(κ)
j (q

(κ)
i ). The SPPs are assumed to be orthonormal on the grid,

∑
i v

(κ)
ij v

(κ)
il =

δjl. Throughout this section we will use the letters i and k to label grid points and j and
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l to label SPPs. In the mathematical literature the expansion (35) is known as Tucker

format70,71.

The task is now to determine optimal coefficients and SPPs. To this end we minimize

∆2 =

N1∑
i1=1

. . .

Nf∑
if=1

(
Vi1...if − V

app
i1...if

)2
=
∑
I

(VI − V app
I )2 , (36)

where I denotes a composite index which runs over all grid points. Minimizing ∆2 by varying

only the coefficients yields

Cj1...jf =

N1∑
i1=1

. . .

Nf∑
if=1

Vi1...if v
(1)
i1j1
· · · v(f)if jf

, (37)

i. e. the coefficients are given by overlap.

More difficult is to find optimal SPPs. Within POTFIT one defines the SPPs as eigen-

vectors of the potential density matrices

%
(κ)
kk′ =

∑
Iκ

Vi1...iκ−1kiκ+1...if Vi1...iκ−1k′iκ+1...if =
∑
Iκ

VIκk VIκk′ , (38)

where similar to above Iκ denotes a composite index which contains all grid indices except

the κth one, and in Iκk the κth entry is replaced by k. The eigenvectors are ordered according

to their eigenvalues (largest comes first), i. e. one neglects SPPs with small eigenvalue and

hence small contribution to the potential. This approach is known to be optimal for the two-

dimensional case72. For the general f -dimensional case (f >2), POTFIT is not optimal but

provides SPPs which are close enough to optimal ones to be useful. Fully optimal SPPs can

be found – in principle – by minimizing ∆2, Eq. (36), with the aid of a general minimization

procedure, e. g. simulated annealing or genetic algorithm. But such procedures are much

too costly.

1. Contraction over one degree of freedom

The number of expansion terms, s =
∏f

κ=1mκ appearing in Eq. (35), should be as small

as possible, because this number determines the effort of the integral calculation using this

product-form potential. At virtually no cost one can reduce the number of expansion terms

by one expansion order mν , where ν denotes the DOF over which a contraction is performed.
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To this end we define contracted expansion coefficients

D
(ν)
j1...jν−1iνjν+1...jf

=
mν∑
jν=1

Cj1...jf v
(ν)
iνjν

. (39)

As the expansion order mν will no longer appear in the working equation for V app, one may

set mν = Nν and use the full set of SPPs for this particular DOF. In this case one performs

a unitary transformation on the νth index of the potential to obtain the coefficient C, and

then performs the inverse unitary transformation on the νth index of the coefficient. Hence

effectively there is no transformation on the νth index and D(ν) is conveniently computed

as

D
(ν)
j1...jν−1iνjν+1...jf

=
∑
Iν

Vi1...if v
(1)
i1j1
· · · v(ν−1)iν−1jν−1

v
(ν+1)
iν+1jν+1

· · · v(f)if jf
. (40)

Note that the νth potential density matrix and the C-tensor are no longer needed. Using

contraction, the approximate potential is written as

V app
i1...ip

=

m1∑
j1=1

. . .

mν−1∑
jν−1=1

mν+1∑
jν+1=1

. . .

mp∑
jp=1

D
(ν)
j1...jν−1iνjν+1...jp

× v(1)i1j1
· · · v(ν−1)iν−1jν−1

v
(ν+1)
iν+1jν+1

· · · v(f)if jf
. (41)

Contraction over the νth DOF is a very helpful trick as it substantially reduces the numerical

effort of the following integral evaluation without affecting the accuracy of the product

expansion. One should contract over that DOF which otherwise would require the largest

expansion order.

2. Error estimate

Although the POTFIT algorithm does not provide a fully optimal product form (except

for f = 2), it is sufficiently close to optimal to be very useful. This is shown by the following

error-bound formula.

Λ

f−1
≤ ∆2

opt ≤ ∆2 ≤ Λ with Λ =

f∑
κ=1
κ 6=ν

Nκ∑
j=mκ+1

λ
(κ)
j . (42)

Here λ
(κ)
j denotes the jth eigenvalue of the potential-density matrix %(κ), ν denotes the

contracted DOF, and ∆2
opt is the optimal L2 error, i. e. the one obtained when the SPPs

are truly optimized. Obviously, Λ is the sum of the natural weights of neglected SPPs. The
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L2 error, ∆2, is rigorously bounded by this sum. If all SPPs are included, i. e. if mκ = Nκ,

POTFIT reproduces the original potential exactly on the grid points. Moreover, the last

inequality of Eq. (42) tells one how to choose the expansion orders, mκ, for a given error to

be tolerated. The inequality in the middle is trivial, but the first inequality shows that the

error bound Λ is at most (f−1) times larger than the optimal error. The root-mean-square

error, rms =
√

(∆2/
∏
Nκ), is hence larger than the one of an optimal product expansion

by at most a factor of
√

(f−1).

Note that POTFIT is variational in the sense that the rms-error decreases when the

expansion orders are increased. This monotonic convergence is an important property of

POTFIT.

3. Including weights

The inclusion of weights, i. e. minimizing ∆2 =
∑

I(VI − V app
I )2wI , is often in-

evitable for obtaining an accurate product representation of the physically relevant part

of the potential without going to high expansion orders. The inclusion of separable weights,

wI = w
(1)
i1
· · ·w(f)

if
, is very simple68, but separable weights are not so helpful and not discussed

here. The inclusion of non-separable weights unfortunately leads to complicated equations

of little use. There is, however, a nice trick14,69, which allows one to emulate non-separable

weights by an iterative procedure. To this end we introduce a reference potential V ref such

that the weighted difference between the potential and its product representation is identical

to the difference between the reference potential and the product representation

(VI − V app
I )wI = V ref

I − V
app
I . (43)

Then one simply can potfit the reference potential to obtain a product representation, V app,

which is (almost) optimal with respect to the weighted sum of squared differences. Obviously,

V ref is given by

V ref
I = wIVI + (1− wI)V app

I . (44)

The definition of the reference potential depends on V app which in turn depends on the

reference potential. Hence, the equations must be solved iteratively. One first potfits V and

evaluates the reference potential. Then the reference potential is potfitted and with the new
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V app a new reference potential is built. The process is iterated until some break-off criterion

is satisfied.

When emulating non-separable weights we always have used a special form of the weights.

The weights are set to one within the so called relevant region and to zero otherwise. The

relevant region is usually defined by an energy criterion, i. e. it is the region where the

potential is lower than some suitably chosen energy threshold. Restrictions on coordinates

can be set as well when defining a relevant region. With such a definition of the weights,

i. e. zero or one, Eq. (44) has a vivid interpretation. The reference potential is the original

potential within the relevant region and the fitted potential otherwise. Moreover, with this

choice of the weights we always observed a lowering of the weighted L2 error with each

iteration.

4. Computational effort and memory consumption

The potfit expansion was introduced to reduce the numerical labor when evaluating the

integrals. Consider the computation of the matrix element <ΦJ |V |ΦL>. Doing this integral

on the primitive grid requires N f multiplications. (Here we assume, for sake of simplicity,

that all DOFs have the same number of grid points, Nκ = N .) Doing the integral with a

potfit expansion requires sfN multiplications. The number of potential terms is, due to

contraction, s = mf−1, where, similar to above, mκ = m is assumed. The gain is hence

gainCPU =
1

f

(
N

m

)f−1
. (45)

A potfit expansion does not only speed-up the calculation, it also compacts the represen-

tation of the potential leading to a much lower memory demand. The full potential consists

of N f data points, whereas a potfit expansion, Eq. (41), takes Nmf−1 + Nm(f−1) data

points. For f > 2 the second term is negligible in comparison with the first one, and one

arrives at a memory gain

gainmem =

(
N

m

)f−1
. (46)

As an example let us consider a 6D problem where each DOF is represented by 25 grid

points. Assuming m=6 (m=5), i. e. 7776 (3125) potfit terms after contraction, one has

a CPU-gain of 209 (521), which is a quite remarkable speed-up. The potential consists of

N f = 2.4 × 108 points and requires 1.8 GB of storage. The potfit consumes only 1.5 MB
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(615 KB). A potfit representation is hence very compact. This is an important feature

when turning to larger systems where the potential evaluated at the grid points ceases to

fit into memory. Unfortunately POTFIT cannot solve this problem. Although a potfit

representation is very compact, to arrive at this representation one has to perform sums

over all grid points, see Eqs. (38,40). Hence, using today’s workstations, POTFIT is limited

to problems with less than 109 grid points, i. e. in general to systems with at most six or

seven degrees of freedom. One way out of this dilemma is to switch to a (in general more

approximate) n-mode representation (see section III C). One may then potfit the n-mode

terms. But a further development of POTFIT, multi-grid POTFIT (MGPF), may provide a

solution. MGPF, which is currently under development, is briefly discussed in the following

subsection.

As discussed in section II C, MCTDH makes use of mode combination. For optimal

performance one should use the same mode combinations in POTFIT as in MCTDH. The

generalization to POTFIT with mode combination is obvious: f is replaced by p, Nκ becomes

the particle grid size, and the SPPs operate on particles (combined modes) rather than on

DOFs. With these substitutions all equations remain valid.

5. Multi-Grid POTFIT

The MGPF algorithm is developed to soften the strong exponential growth of the POT-

FIT effort with dimensionality. For MGPF two sets of grids are to be defined. A fine grid

with numbers of grid points Nκ, and a coarse grid with numbers of grid points nκ. The fine

grid is the one on which the subsequent MCTDH calculations are performed, the coarse grid

is used to perform internal sums, e. g. when potential density matrices are computed. The

coarse grid is assumed to be part of the fine grid.

As a first step the PES is potfitted on the coarse grid using mκ = nκ. The potfit is hence

complete and the original potential is exactly reproduced on the coarse grid. In a following

step the SPPs of this potfit are replaced by SPPs for the fine grid. To determine the latter

we minimize the error ∑
Iκ

∑
ĩκ

(
VIκ

ĩκ
− V app

Iκ
ĩκ

)2
= min (47)

for κ = 1, . . . , f . Quantities of the fine grid are marked by a tilde and V app
Iκ
ĩκ

denotes the
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coarse grid potfit but with the SPPs of the κth DOF replaced with the fine grid SPPs, ṽ
(κ)

ĩκjκ
.

These SPPs are determined by the above minimization process. After some algebra one

obtains

ṽ
(κ)

ĩκjκ
=
∑
iκ,kκ

%
(κ)′

ĩκiκ
%
(κ)−1

iκkκ
v
(κ)
kκjκ

(48)

where %
(κ)′

ĩκiκ
denotes a potential density matrix where the first index runs over the coarse grid

and the second over the fine grid. The internal summation is done over the coarse grid, i. e.

%
(κ)′

ĩκiκ
=
∑
Iκ

VIκ
ĩκ
VIκiκ (49)

MGPF requires fNnf−1 potential evaluations and additionally 2fNnf multiplications.

This is to be compared with POTFIT which requires N f potential evaluations and fN f+1

additional operations. As the potential evaluations are usually the most time consuming

part when potfitting, we compare these efforts for an example with parameters f=12, N=

25, n=m= 4. The MGPF requires 1.3 × 109 potential evaluations while POTFIT takes

6× 1016. This demonstrates the great efficiency of MGPF.

A delicate question is the accuracy of MGPF. To partly answer it we state two results

• An MGPF potential reproduces the original potential exactly on the coarse grid points.

• If the original potential happens to be of product form with ranks which are equal

or smaller than the MGPF expansion orders (i. e. coarse grid sizes), then MGPF

reproduces the original potential exactly everywhere on the fine grid.

In particular the second statement is very assuring. However, in general the original potential

will not be of low rank. Then both representations, POTFIT and MGPF, will include some

error. For the very few tests we have done so far we observed that the MGPF rms-error is

about four times larger than the POTFIT one, while using identical numbers of SPPs. This

increase is tolerable considering the enormous reduction in effort provided by MGPF.

C. The n-mode representation

An n-mode representation73–75 of a potential V (q) is given by

V app(q) = V (0) +
∑
i

V
(1)
i (qi) +

∑
i<j

V
(2)
ij (qi, qj) +

∑
i<j<k

V
(3)
ijk (qi, qj, qk) + · · · (50)
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where the series is truncated at a suitable order. The one-body terms V
(1)
i (qi) are cuts

through the hyperspace with just one coordinate varying at a time. Similarly, the two-body

terms V
(2)
ij (qi, qj) are the cuts with two coordinates varying at a time. However, the over-

counting of lower-dimensional grids embedded in higher dimensional ones must be accounted

for. In detail the algorithm is as follows. A reference point a is chosen, usually the potential

minimum or a saddle point. The symbol a(κ) denotes the reference point except for the κth

coordinate and a(κ,ν) has two coordinates missing. The n-mode terms are then defined as

V (0) = V (a) (51)

V
(1)
i (qi) = V (qia

(i))− V (0) (52)

V
(2)
ij (qi, qj) = V (qi, qj, a

(i,j))− V (1)
i (qi)− V (1)

j (qj)− V (0) (53)

· · · (54)

The n-mode representation has the useful feature that the individual terms are of low

dimensionality (provided the representation is truncated at low order, four or five, say). Ma-

trix elements of the potential can thus be done relatively easily, but for usage with MCTDH

one would simply potfit the n-mode terms. A disadvantage of the n-mode representation is

its strong combinatorial increase of the number of terms with order. This increase can be

softened by mode combination as discussed in Ref.76. There it is also discussed how to use

several reference points to enforce that the potential representation exhibits the full symme-

try of the original potential. The most significant disadvantage of the n-mode representation,

however, is the lack of an error control. Moreover, the representation is non-variational and

an addition of a term will not necessarily reduce the representation error.

The n-mode representation is heavily used in time-independent quantum dynamical cal-

culations, see e. g. Refs.63,64,77. Together with MCTDH this method has been used to study

the dynamics of the Zundel cation78,79 because this system is much too large to be treated

with POTFIT.

IV. APPLICATIONS

Before one can start to simulate the dynamics of a system one obviously has to define

a coordinate system and to set up the Hamiltonian. The latter consists of a kinetic energy

operator (KEO) and a potential energy surface (PES). When normal mode coordinates are
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used, the KEO is trivial (except for the often neglected vibrational angular momentum

term). This explains why normal mode coordinates are so popular. However, the rectilinear

normal modes coordinates often do not closely follow the internal motions of a molecule in

particular if there are large amplitude motions. These motions are much better described

by curvilinear coordinates, e. g. angles. The use of rectilinear coordinates may introduce

strong artificial correlations, i. e. correlations which are entirely due to the use of unsuitable

coordinates. (Consider to use Cartesian coordinates for the electron of a hydrogen atom.)

The use of curvilinear coordinates, however, may lead to rather complicated expressions for

the KEO. The excellent review of Gatti and Iung65 discusses how to systematically obtain

a KEO for the so called polyspherical coordinates.

On the other hand, obtaining an accurate PES for 9 or more internal coordinates, requires

a major effort despite very impressive progress in PES fitting80–82. Moreover, the PES has

then to be brought to product form as discussed in section III. In particular for large systems

it is therefore attractive to use model Hamiltonians. The use of model Hamiltonians is very

common in physics (spin-boson model, Hubbard model, etc.), less so in chemistry. However,

the vibronic-coupling Hamiltonian, which will be discussed in the next section, is a very

successful model in chemistry.

A. Multidimensional non-adiabatic dynamics

The concept of a potential energy surface is one of the most fruitful concepts in theoretical

chemistry. It relies on a separation between electronic and nuclear motion. Due to the large

mass ratio between nuclei and electron masses, this – the Born-Oppenheimer separation –

is often an excellent approximation. However, the approximation breaks down when the

PES of different electronic states come close to each other or even intersect in a so called

conical intersection83,84. The non-adiabatic coupling terms diverge at a conical intersection.

Quantum-dynamical calculations are therefore usually performed in a diabatic representa-

tion, where the coupling is moved from the kinetic energy to the potential. The potential

coupling is non-singular. The diabatic representation has another advantage, namely that

the diabatic surfaces are much smoother than the adiabatic ones. This allows one to repre-

sent them by a simple ansatz, e. g. by harmonic potentials. This is done for the vibronic

coupling model Hamiltonian83,85, which in its quadratic form reads
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Process System Formula f e Ref.

Photo- pyrazine C4H4N2 24 2 86

excitation furan C4H4O 13 4 87

Photo- butatriene C4H
+
4 18 2 88

ionization allene C3H
+
4 15 3 89

pentatetraene C5H
+
4 21 3 90

benzene C6H
+
6 13 5 91

cyclopropane C3H
+
6 14 4 92

difluorobenzene C6F2H
+
4 10 5 93

trifluoroacetonitrile CF3CN+ 12 5 94

phenylacetylene C8H
+
6 24 4 95

naphthalene C10H
+
6 29 6 96

antracene C14H
+
10 31 6 96

Photo-

detachment phenide C6H5 27 2 97

TABLE I: Collection of MCTDH calculations on vibronic motion in photo-excitation, -ionization,

and -detachment spectra. The columns f and e give the numbers of DOFs and electronic states,

respectively, included in the simulation. An underlined number of DOFs indicates that not all

(3N−6) DOFs are accounted for (reduced dimensionality calculations).

Hdia = T(q)1 +

f∑
i=1

ω2
i

2

1 0

0 1

 q2i +

ε1 0

0 ε2



+
∑
i∈G1

κ(1)i 0

0 κ
(2)
i

 qi +
∑

(i,j)∈G2

γ(1)i,j 0

0 γ
(2)
i,j

 qiqj

+
∑
i∈G3

 0 λi

λi 0

 qi +
∑

(i,j)∈G4

 0 µi,j

µi,j 0

 qiqj . (55)

The sets G1 · · ·G4 are determined by group theory. In the linear vibronic coupling model

the bi-linear coupling terms γ and µ are ignored. The ωi and qi are the ground-state normal
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mode frequencies and the frequency and mass scaled normal mode coordinates, respectively,

and T denotes the KEO, which in this case is just a sum of frequency weighted second

derivatives. The model parameters are determined by comparing the model to ab-initio

calculations. The potential matrix is diagonalized and the thus obtained adiabatic model

surfaces are fitted to ab-initio points.

The vibronic coupling Hamiltonian is a very fruitful and frequently used model84. As

the Hamiltonian is of product form, it is very suitable for MCTDH. The photo-ionization

or photo-excitation spectra of several vibronically coupled systems have been investigated

with MCTDH, an (incomplete) list of these studies is given by Table I.
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FIG. 2: Sketch of excitation in butatriene.

Let us discuss two examples, the photo-ionization of butatriene85,88 and the photo-

excitation of pyrazine86. The relevant electronic states of butatriene are sketched in

Fig. 2. The ionization process places the ground state wave packet on one of the two

coupled electronic states (Condon approximation). The wave packet is then propagated

and the absorption spectrum is given by a Fourier transform of the autocorrelation function

a(t) = 〈Ψ(0) |Ψ(t)〉. The resulting spectrum is shown in Fig. 3. There is a simple interpre-

tation. The lines near 9.3 eV originate from a population of the lower ionic state and the
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intensity near 10 eV is due to population of the higher one. But why is there intensity in the

middle? This structure was called the mystery band. It was shown in 1977 by Cederbaum

et. al. that the mystery band is due to vibronic coupling, i. e. to a break-down of the Born-

Oppenheimer picture. There are many so called vibronic states which are electronically a

mixture of both states X 2B2g and A 2B2u. Nuclear and electronic motion can no longer

be treated separately. However, the vibronic coupling is not very strong for this molecule,

the spectrum is structured and resembles a progression of lines, although a closer analysis88

shows that the several vibronic states contribute to each peak of the spectrum. Fig. 3 shows

the experimental spectrum in red. Because the measurement is not absolute, the two spectra

are normalized at their maxima. The MCTDH calculations88 are converged and differences

between computed and measured spectra must be attributed to the vibronic-coupling po-

tential model. The agreement between theory and experiment is very good considering the

complexity of the dynamics and the simplicity of the Hamiltonian model.

9 9.5 10
Energy [eV]

0

In
te

ns
ity

MCTDH Calculation
Experiment

Full 18 dimensional model

FIG. 3: Photoionization spectrum of butatriene. The black line depicts the simulation88, and the

red line shows the experiment98.

We turn to our second example, photo-excitation of pyrazine into a vibronically cou-

pled manifold of the S1 and S2 diabatic states. The dynamics is very different compared

to butatriene because the vibronic coupling is rather strong and most of the vibrational
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structures are washed out. Fig. 4, black line, shows the absorption spectrum of pyrazine.

At low energies one can observe some resolved lines. These refer to vibrational states on

the S1 state. But above 2.1 eV there is only a broad, almost structure-less peak. This is a

quasi-continuum of lines, even high resolution measurements have not been able to resolve

individual lines. Virtually all 24 vibrational degrees of freedom are excited when the wave

packet changes the electronic state in the vicinity of the conical intersection, leading to an

enormously dense spectrum. The agreement with experiment99 (see Fig. 5) is excellent.

0

20

40

60

80

 1.5  2  2.5  3

σ(
E

)

E [eV]

FIG. 4: Photoabsorption spectrum of pyrazine. The black line is the result of a very accurate

MCTDH calculation and the red line shows a spectrum generated by a very cheap ML-MCTDH

calculation. See text. The spectra shown are with respect to the energy zero-point of the Hamil-

tonian. To compare with experiment they must be shifted to higher energy by 2.48 eV.

The red line in Fig. 4 shows the result of an ML-MCTDH calculation44. The ML-MCTDH

spectrum shows some artificial oscillations in the high energy tail of the spectrum (above

2.5 eV), there are some deviations in the peak structure between 2.2 eV and 2.5 eV, and

the low energy part, which however is of lesser interest, is not well reproduced. But the less
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MCTDH Calculation

Pyrazine - full 24 dimensional model

FIG. 5: Comparison experiment/MCTDH. Note that here, in contrast to Fig. 4, the photoabsorp-

tion spectrum is plotted versus wavelength rather than energy.

accurate ML-MCTDH calculation is much faster. The very accurate MCTDH calculation

used a wave function with 11 million coefficients and its propagation took 630 hours on a

single processor CPU. (This is an extrapolated time, the actual calculation was done on

8 cores in parallel). The ML-MCTDH wave function was described by only 22 thousand

coefficients and the propagation took only 7 minutes! This demonstrates the enormous

efficiency of ML-MCTDH in particular when low accuracy is sufficient. Of course, one can

also perform highly accurate calculations with ML-MCTDH, but then they become costly.

For more details see Ref.44.

To detail the two calculations we show in Figs. 6, 7 the tree structures of the MCTDH and

ML-MCTDH calculations, respectively. The numbers close to the lines indicate how many

SPFs or grid-points are used. As the MCTDH calculation uses the multi-set formalism,

there are two numbers specifying the numbers of SPFs on each of the two coupled electronic
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FIG. 6: MCTDH tree for pyrazine. The numbers indicate the numbers of SPFs and grid-points

used. As a multi-set approach is used there are two entries for each set of combined SPFs, one for

S1 and the other for S2.

FIG. 7: ML-MCTDH tree of pyrazine. The numbers of SPFs and grid-points used are indicated.
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states. ML-MCTDH calculations must be done in single-set formulation. Electronic and

nuclear motions are then separated in the uppermost layer and the next layer separates the

five most important DOFs (’system’) from the rest (’bath’). Both parts are then further

split into deeper layers, using four layers for the ’system’ and up to six layers for the ’bath’.

B. IR-spectrum of the Zundel cation H5O
+
2

As a final example we discuss the infra-red (IR) absorption spectrum of the Zundel cation

H5O
+
2 . This cation is the smallest protonated water cluster and plays an important role in

the proton transport in water. Although this cation is smaller (7 atoms, 15D) than pyrazine

(10 atoms, 24D), and its dynamics evolves on the Born-Oppenheimer ground state surface

alone, it is much harder to investigate. Firstly one has to define an appropriate set of

coordinates and derive the KEO for it, and secondly the PES has to be brought to product

form.

FIG. 8: Polyspherical coordinate system of H5O
+
2 . The vectors are parameterized by their lengths

and spherical angles. The two big circles represent oxygen atoms while the small circles represent

hydrogens.

The Zundel cation is a floppy molecule exhibiting anharmonic and large amplitude mo-

tions. The simple rectilinear normal mode coordinates are unsuitable, because their use

introduces strong artificial correlation, i. e. correlations which can be avoided when using

appropriate coordinates. We have used polyspherical65 coordinates. These are defined by a

set of internal vectors which finally are described by their lengths and spherical angles. The

set of vectors used is shown in Fig. 8. The KEO for this set of coordinates is given by a very

complicated and lengthy expression78,79, and its derivation was a major part of the Zundel

project62,76,78,79,100–102.

There have been enormous advantages in potential surface fitting80–82, and we have used
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the full dimensional PES of Huang, Braams, and Bowman103. But a direct use of the PES

is impossible because the underlying primitive product grid consists of more than 2.6× 1015

points. As discussed in section III one cannot potfit such a large PES, one has to turn to an

n-mode representation. We have generated an n-mode representation in combined modes

taking all first and second order terms and three selected third order terms into account.

Note that by order we refer here to order in combined modes, the DOF order goes up to 7.

Furthermore, to ensure that the approximated potential has the full symmetry, 10 reference

points – the 8 equivalent potential minima and the two saddle points – have been used. The

n-mode terms are then potfitted to arrive at a PES in product form. For more details see

Refs.78,79.

Having derived the KEO and a compact form of the PES we turn to the MCTDH cal-

culations. First the ground state was computed by improved relaxation. Then this wave

function was multiplied with the dipole surface and the dipole operated wave packet was

used as initial state for propagation. The autocorrelation function of this propagation was

then Fourier transformed to obtain the IR absorption spectrum. This spectrum is shown

in Fig. 9 in comparison with experimental results. Because one cannot have a dense gas of

ions, direct IR absorption spectroscopy is impossible for ions. The vibrational predissocia-

tion technique was hence used. When the molecular ion absorbs a photon an attached rare

gas atom is boiled off and the effect is detected by mass spectroscopy.

The agreement between theory and experiment is excellent considering the complexity of

the system. The double line structure near 1000 cm−1, which was a mystery for some time,

could be explained. The proton motion along the O-O axis and a combination of a two

phonon wagging and O-O stretching are pairs of a Fermi resonance62,76. The proton motion

obviously creates the largest change in the dipole moment and acquires the largest oscillator

strength. Due to the Fermi resonance it loans some intensity to the mentioned combination

line. Similarly, the ungerade water bending line, which appears around 1750 cm−1, acquires

most of its intensity from coupling to the central proton motion79.

The effect of isotopic substitution was also investigated. Fig. 10 shows the spectra of

H(H2O)+2 , D(D2O)+2 , H(D2O)+2 , and D(H2O)+2 in comparison. In the middle region, 800-

2000 cm−1, intensities are largely determined by Fermi resonance mixing. The resonance

pattern changes due to the isotope frequency shifts, leading to unusual strong changes in

intensities. The spectrum of the D(H2O)+2 cation is the most regular one of the four. The
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FIG. 9: Calculated IR-spectrum of of H5O
+
2
79 (upper part) and the experimental vibrational

predissociation spectrum104 (lower part). Two different lasers are used in the experiment, which

explains that there are separate figures for different energy regions. The experiment cannot detect

structures below 800 cm−1 because the vibrational energy is then insufficient to dissociate the

H5O
+
2 – Ne van der Waals bond. The simulations show that there is indeed no absorption between

2000 and 3500 cm−1 and above 4000 cm−1. However, there are strong lines near 100 cm−1 and

250 cm−1 (wagging motion).

combination line of the double peak, assigned as w31R, and the water bending peak, assigned

as bu, are very small. The most strongly coupled dynamics, on the other hand, is exhibited

by the H(D2O)+2 cation. The labels which assign the lines in Fig. 10 are explained in Ref.102.
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FIG. 10: IR-spectra of H5O
+
2 , D5O

+
2 , HD4O

+
2 , and DH4O

+
2 . The four isotopologues exhibit rather

different spectra because the isotopic substitution changes the resonance pattern.

V. CONCLUSION

The first publication cocerning the MCTDH algorithm12 appeared in 1990, and, in the

following two decades, MCTDH has established itself as a very efficient and general algorithm

for propagating wave packets. The use of a variationally determined time-dependent basis of

SPFs results in an very compact wave function. Using mode combination or the multi-layer

extension of MCTDH, ML-MCTDH, the wave function becomes even more compact, which

allows one to treat rather large systems.

Before one can start with propagating a wavepacket, however, one must define a set of

suitable coordinates, derive the KEO for this set, and develop a compact potential repre-

sentation. Due to space limitations we have not discussed KEOs but refer to the excellent

review of Gatti and Iung65. The potential representation becomes a serious problem when

investigating larger systems (9D say, and larger) with a general, complicated PES. (For

model systems, as exemplified by the vibronic coupling or the spin-boson models, there is

no such problem.) We have therefore covered potential representations and discussed POT-
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FIT, multi-grid POTFIT (which is still under development), and the n-mode representation.

We note that a potential representation may be avoided by adopting the correlated DVR

method of Manthe105.

To demonstrate the power of the MCTDH method we have discussed two types of ap-

plications. The first type is characterized by the use of model Hamiltonians, and we have

discussed the very successful vibronic coupling Hamiltonian model and used it to compute

the photo-ionization spectrum of butatriene and the photo-excitation spectrum of pyrazine.

There are, in fact, quite a number of MCTDH applications in this field, and MCTDH was

always very successful in solving the dynamics generated by a vibronic coupling Hamiltonian.

The other type of applications, exemplified here by the study of the IR-spectrum of

the Zundel cation H5O
+
2 , is characterized by the use of curvilinear coordinates, complicated

kinetic energy operators, and a general PES which must be transformed to compact product

form. Here again, MCTDH could show its great power. The very anharmonic, flexible, and

strongly coupled cation exhibits a rather complicated absorption spectrum which could be

explained and assigned.

MCTDH, being a very general method, has been applied to a wide range of problems.

In addition to the above mentioned types of applications, it has been used to investigate

reactive scattering106–109, inelastic scattering110,111, scattering of molecules off surfaces112–114,

isomerisation and IVR67,115, control116–118, nuclear motion during electron scattering or auto-

ionization processes119–121, and other problems.

A complicated algorithm like MCTDH is difficult to implement and its use involves many

nuances. To bring MCTDH to success we have developed the Heidelberg MCTDH package

which is available on request. See http://mctdh.uni-hd.de. The package, which comes with

a comprehensive documentation, is used by several groups around the world.
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22 S. Zöllner, H.-D. Meyer, and P. Schmelcher. Correlations in ultracold trapped few-boson

systems: Transition from condensation to fermionization. Phys. Rev. A 74 (2006), 063611.
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54 H.-D. Meyer, F. Le Quéré, C. Léonard, and F. Gatti. Calculation and selective population of

vibrational levels with the Multiconfiguration Time-Dependent Hartree (MCTDH) algorithm.

Chem. Phys. 329 (2006), 179–192.

55 K. Drukker and S. Hammes-Schiffer. An analytical derivation of MC-SCF vibrational wave

functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial

application to protonated water chains. J. Chem. Phys. 107 (1997), 363.
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photoelectron bands of allene beyond the linear coupling scheme: An ab initio dynamical study

including all fifteen vibrational modes. J. Phys. Chem. A 105 (2001), 5567–5576.

90 A. Markmann, G. Worth, S. Mahapatra, H.-D. Meyer, H. Köppel, and L. Cederbaum. Simu-
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