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The MCTDH method has been used successfully to treat the non-adiabatic dynamics of
a number of systems. These are hard problems due to the number of modes that need to
be included in a calculation, and the strong coupling between the nuclear and electronic
motion at conical intersections connecting electronic states in these systems. In this review,
an overview of the basic theory of the method is given highlighting how it is able to treat larger
systems than other quantum dynamics methods. The vibronic coupling model Hamiltonian
is also described, which provides a good starting point for the description of these systems.
Examples of calculations made and systems treated are given. Finally, a development of the
basic MCTDH method in which some of the usual time-dependent basis functions are replaced
by Gaussian wavepackets is outlined. This method promises not only to treat larger systems,
but to provide a consistent quantum - semiclassical framework.

Keywords: Quantum dynamics simulations; The MCTDH method; Non-adiabatic
population transfer; Conical intersections; Theoretical chemistry.

1. Introduction

Quantum dynamics simulations have become increasingly important to provide a
detailed description of a phenomenon in terms of the underlying molecular nature
of the system. Solving the time-dependent Schrédinger equation variationally using
a straightforward basis-set expansion of the wavefunction is known as wavepacket
dynamics. Wavepacket propagation methods are particularly attractive: they are
simple to implement, and provide easily visualisable results of the evolving system
that can be easily related to experiment. The most powerful wavepacket dynamics
algorithm at present, able to treat larger systems than the standard method, is
multi-configurational time-dependent Hartree (MCTDH). The algorithm is, how-
ever not as simple to use.

The MCTDH algorithm was introduced in 1990 by Meyer, Manthe, and Ceder-
baum [1]. A first comprehensive description of the method — together with the first
%%I&:ga%\éj%&gg&tiﬁasgi&nlh (ggglg%%glihsgociation of NOCI) — appeared two years later [2].
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The basic theory of MCTDH has been discussed in great detail in two review arti-
cles [3, 4] and in a forthcoming book [5], from which parts of this review are taken.
Hence in the following only an overview of MCTDH theory is given, highlighting
the features that give the method its power and flexibility.

A class of problems that have been treated with particular success by the
MCTDH method are those in which a conical intersection between potential en-
ergy surfaces dominates the dynamics. These non-adiabatic systems - so called as
they cannot be described by a single adiabatic potential energy surface - are able
to undergo radiationless electronic state crossing on an ultrafast (femtosecond)
timescale [6, 7]. The signature of conical intersections are found in many spectra,
particularly photoelectron spectra [8-10], and they provide important pathways in
photochemistry [11, 12] in systems ranging from Hs [13, 14] to biologically active
chromophores such as retinal [15, 16] and DNA bases [17, 18].

Wavepacket dynamics simulations have a natural connection to detailed exper-
iments using femtochemistry laser spectroscopy, and simulations are routinely re-
quired to aid the interpretation of these studies. The main hurdles for simulations
are due to the size of the systems studied. Non-adiabatic phenomena are inherently
multi-dimensional in nature, often with a number of vibrational modes coupled
strongly to the electronic degree of freedom. A typical example is provided by the
absorption spectrum of pyrazine (C4NgHy). The conical intersection connecting
the S; and S states strongly couples 5 vibrational modes to the electronic motion,
and weakly couples the remaining 19 [19]. Not only is such a system too large
to simulate using standard wavepacket dynamics methods, but there is also the
problem of obtaining suitable potential energy surfaces.

A powerful, yet simple description of coupled potential surfaces is provided by
the vibronic-coupling model Hamiltonian which uses the correspondence between
the adiabatic and diabatic pictures to full effect [10]. The adiabatic picture is
that provided by the clamped-nucleus Hamiltonian, with sets of energy-ordered
potential energy surfaces provided by the electronic states. Coupling between these
states is provided by nuclear momentum-like operators. The diabatic picture is
one in which a potential energy surface is related to an electronic configuration,
and so can be related to chemical entities. Couplings are provided by potential-like
operators. The surfaces in the diabatic picture, as they are smooth, can be described
by a low-order Taylor expansion. Electronic structure calculations, however, lead
to the well-defined adiabatic surfaces.

The vibronic-coupling model, described in Sec. 5, thus provides a Hamiltonian
for treating non-adiabatic phenomena. In addition to its simplicity, it is in the
product-form vital for the efficient application of the MCTDH algorithm (Sec.
2.2). In Sec. 6 an example is used to show how the MCTDH method is able to
treat large problems using the model Hamiltonian: a 10 mode 2 state system is
straightforward a 24 mode 2 state system is possible. After that in Sec. 7 examples
are given of problems that have been treated.

As the full wavefunction is obtained, it can be analysed to obtain a range of
information. The simplest are state populations and coordinate expectation values
that describe the system evolution. Spectra in the Condon approximation can also
be obtained from the autocorrelation function (Sec. 3). More complicated analyses
are also possible if a laser pulse is included explicitely into a calculation. These,
a straightforward addition in MCTDH [20], allows optimal control calculations, in
which a laser field can be designed to control the system evolution [21]. Alterna-
tively, a time-resolved spectrum, such as a time-resolved photo-electron spectrum,
can be calculated [22].

An exciting development at present is the use of parametrised basis functions in
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the MCTDH method. This, the G-MCTDH method, was introduced by Burghardt
et al in 1999 [23]. By using Gaussian basis functions to describe some, or all,
modes it is possible to provide better scaling and promises access to even larger
systems than those accessible to the standard MCTDH method. Connections to
semi-classical and mixed quantum-classical methods are also made. This is de-
scribed in Sec. 8.

The Gaussian functions of the G-MCTDH method provide localised basis func-
tions. The algorithm thus provides the framework for direct dynamics calculations,
in which the potential energy surfaces are calculated on-the-fly using quantum
chemistry programs as and when they are needed. This is an attractive idea. By
removing the need to calculate the potential surfaces before a system can be stud-
ied, they open up the possibility of doing quantum dynamics calculations as simply
as quantum chemistry calculations can be made. They also promise to be efficient
for large systems, as only the relevant region of configuration space is searched.
Such calculations are not further treated in this article, but are dealt with in a
recent review [24].

2. MCTDH Theory

2.1. Wavefunction Ansatz and Equations of Motion

The basis of the MCTDH method is the use of the following wavefunction ansatz
to solve the time-dependent Schrodinger equation for a physical system with f
degrees of freedom (DOFs) described by coordinates g1, ... gy:

U(gr..qpt) =Y Y A, 008 Q1) o P(Qp 1) (1)

=l =l

=> A0, . (2)
J

Eq. (1) is a direct product expansion of p sets of orthonormal time-dependent basis
functions {o*) }, known as single-particle functions (SPFs). The coordinate for each
set of n, functions is a composite coordinate of one or more system coordinates

Qx = (Garapr---) - (3)

Thus the basis functions are d-dimensional, where d is the number of system coordi-
nates that have been combined together and treated as one “particle”. (Typically
d =1 —4). The second line, Eq. (2), defines the composite index J = ji...Jp
and the Hartree product ® y. The ansatz looks similar to the standard wavepacket
expansion [25-27], except that the SPFs provide a time-dependent basis set.
Using this ansatz, a variational solution to the time-dependent Schrodinger equa-
tion is provided by a coupled set of equations, one for the expansion coefficients:

iA =KA | (4)

and one for each set of SPF's

ip) = (1 _ P(H)) (,,(@)‘ HEHF) (5)
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A matrix notation has been used with the A-coefficients and SPFs written as
vectors, i. e. ) = (7", ,goni))T.
The matrix IC is the Hamiltonian operator represented in the basis of Hartree

products
Kjo=(®;|H|®1) . (6)

Thus Eq. (4) has the same form as the equations of motion for standard wavepacket
propagation. The difference is that the Hamiltonian matrix is time-dependent due
to the time-dependence of the SPFs.

The equations of motion for the SPFs contain three new entities. The first is the
projector onto the space spanned by the SPF's

P =57yl | (7)
J

The operator (1 — P(*)) ensures that the time-derivative of the SPFs is orthogonal
to the space spanned by the functions. Thus any changes cover new regions. When
the basis set is complete, the SPFs become time-independent and the equations of
motion are identical to the standard method. If the SPFs do not provide a complete
basis set, then they move so as to provide the best possible basis for the description
of the evolving wavepacket. This optimal description is ensured by the variational
method used for the derivation.

For the other two new entities it is useful to introduce the single-hole functions,

\Ilt(f), which is the wavefunction associated with the j th SPF of the k th particle.
As the total wavefunction lies in the space spanned by the SPFs one can make use
of the completeness relation and write

U= el @) = el . (8)

To make this clear, the single-hole function for the first particle is

AN U SN RO 0

j2:1 jpzl

The single-hole index, J[, is also useful to keep the notation compact. The index
can take any values except for the x th position which has a value a. Thus there
is the single-hole coefficient A ;. and single-hole Hartree product ® ;. which allow
the single-hole function to be written

o) = Z Ajs @ys (10)
Jh‘

where ) ;. is the sum over all index values keeping the value of the £ th index
fixed; J* is a composite index similar to J but with the x th entry removed.

Using this new notation, the mean-field operator matriz, H") can be easily
written as

HE = (w | H vy (11)
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The integration in the brackets is over all particles except . This operator on the
k th particle correlates the motion between the different sets of SPFs.
Finally, the density matriz pt) is

Pl = (Ul | i) (12)
=> A5 Ay . (13)
J»@

The density matrices, which enter the equations of motion for the SPFs, Eq. (5), as
its inverse, can be used to provide a useful measure of the quality of the calculation.
In an analogous way to the use of density matrices in electronic structure theory, the
eigenfunctions of this matrix are termed natural orbitals and the eigenvalues provide
populations for these functions. The lower the population, the less important the
function. As the space spanned by the natural orbitals is equivalent to that of
the original SPFs, if the population of the highest natural orbital is such that
the function is effectively not required for an accurate description of the evolving
wavepacket, the MCTDH wavefunction is of a good quality. As a rule of thumb
averaged quantities such as expectation values and spectra are converged when the
highest natural orbitals have a population less than 1073. Other quantities such as
cross-sections are more sensitive to errors in the wavefunction and the populations
have to drop below 107 for converged results.

2.2. Efficiency and Memory Requirements

Standard wavepacket dynamics uses a wavefunction ansatz like that of Eq. (1), ex-
cept with a set of time-independent basis functions for each DOF rather than a set
of time-dependent functions for each particle. While the number of basis functions
may vary for each DOF, if N is representative of this number, then the wavefunc-
tion is represented by N/ expansion coefficients. This is the basis of the exponential
increase of computer resources with system size that plagues wavepacket dynamics.
As N ~ 50 is reasonable, a 4-dimensional system using double-precision complex
arithmetic requires nearly 100 MB of memory just to store one wavefunction, while
a b-dimensional system requires of the order of 4.8 GB. Clearly this scaling severely
limits the size of system treatable by these methods.

In comparison, the MCTDH wavefunction requires

memory ~ nP + pnN? (14)

where n is characteristic of the number of SPFs for the p particles. The first term
is the number of A-coefficients. The second term is due to the representation of
the SPFs through primitive basis functions

Z% Q) . (15)

Typically, a discrete variable representation (DVR) is used for this. DVRs are the
time-independent bases used in standard wavepacket propagation calculations. A
number of different DVRs have been developed, suitable for use for different types
of coordinates. Examples are the harmonic oscillator DVR used for vibrational
motion, Legendre DVR, for rotations, and exponential and sine DVRs used for free
motion with or without periodic boundary conditions. A related method is to use
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a collocation grid and FFT methods to evaluate the kinetic energy operator. An
overview of the properties of different DVRs and FFT methods is given in Appendix
B of Ref. [3].

There are two limits to be examined. The first is when p = f and d = 1, i.e. all
particles are 1-dimensional. Here the first term dominates. Using reasonable values
of N =50 and n = 10 then for f = 4 the MCTDH wavefunction requires a tiny
0.18 MB and for f = 5 still only 1.56 MB. This is obviously much less than the
memory required to store the full primitive grid. The exponential wall still hits
the method, however, and 153 GB is needed for each wavefunction if f = 10. The
other limit to be studied is when all DOFs are combined together so that only
one particle is present. Thus p = 1 and d = f. In this limit n = 1 and the first
term is always 1. The second term then dominates and of course is simply the size
of the full primitive grid, N/, as in this limit the MCTDH method is identical
to the standard wavepacket method. A single wavefunction now takes 1.5 x 10°
GB. In between these two limits there is a trade between the memory required by
the A-coefficients and that required by the SPFs. Thus if 2-dimensional particles
are used in a 10-dimensional calculation, f = 10, p = 5, d = 2 and the memory
required is 3.4 MB per wavefunction evenly distributed between the 2 parts.

The figures used above assume that n = 10 is a suitable figure regardless of how
many DOF's are combined together into each particle. This is of course not the case.
Imagine n SPFs are required for each particle in a problem where p = f, i.e. all
particles are 1-dimensional. If a second calculation is then made using 2-dimensional
particles, i.e. p = f/2, then n, the number of SPFs required in the new calculation
will be different from n, but 4 < n% (7 = dn is a reasonable rule of thumb).
The upper limit is because correlations between these modes are now included at
the SPF level. For large combinations, 7 < n is possible as in the limit that all
DOFs are combined together n = 1: only a single SPF - the exact wavefunction
- is required. When choosing which DOFs should be combined together it is thus
useful to put strongly correlated modes in one particle as this significantly reduces
the number of SPFs, and thus configurations, required. If the amount of correlation
among the DOFs is not known, one should combine DOF's which are characterised
by similar vibrational frequencies. One must be mindful, however, that the particle
grid lengths do not get too long. For a balanced calculation particles should be
chosen with similar grid lengths.

To solve the equations of motion for the A-coefficients and SPFs, Egs. (4,5), the
elements of the Hamiltonian matrix, IC need to be evaluated:

1 1 1 1
WGP TH ol oy = (0 P TV el o) L (16)

Elements of the mean-field matrices are also required, H*), and the techniques
described below can be used for these too.

If the basis functions are a DVR this multi-dimensional integral would be
straightforward. A set of DVR functions along a coordinate q,, {x*)(q,)} has the
property that their matrix representation of the position operator, §,, is diagonal,
ie.

o o |y =dVsy; (17)

and the values ¢, provide a grid of points related to the DVR functions. As a result,
if there are enough functions for the set to be effectively complete, the potential
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1 1 1
O DTV I A = v s b, (18)

and the integral is obtained by evaluating the potential energy only at the grid

. 1
point qj(-l),...qj(-f).

The kinetic energy operator usually only acts on a single coordinate and matrix
elements can be evaluated analytically in the related finite basis representation
(FBR). The FBR - DVR transformation is then used to give {¢*)}

o T 1) ZUzk @ 11,160 (U2) . (19)

Thus the potential energy is obtained by evaluating the potential function at N/
points, and the kinetic energy by transforming N? matrices. At no time is it neces-
sary to evaluate multi-dimensional integrals, and the full N2/ Hamiltonian matrix
does not need to be built.

The potential energy matrix elements can be obtained by transforming from the
SPF basis to the DVR. Using Eq. (15) and the DVR potential energy Eq. (18),
this is

{ (1) (p) |

@i - (pip (P)>

1)
V‘(‘DEE ’ SOJ

Z Z klll o /(fplta/(f?jl : /(fz)le(ngll)’ I(gi)) : (20)

i1...8p J1..Jp

The DVR is now being used to evaluate the multi-dimensional integral, which
is equivalent to using a quadrature procedure. The kinetic energy can also be
evaluated by an analogous transformation of the FBR representation on Eq. (19).

While Eq. (20) is completely general, it is unsuitable for our requirements as it
requires a transformation from the SPF basis to the full direct-product primitive
grid. And this is precisely what the MCTDH method sets out to avoid as the full
primitive grid for multi-dimensional systems has the dimensions of the standard
wavepacket wavefunction discussed above. The advantages of the DVR can be used
without the crippling scaling if the Hamiltonian is made up of products of functions
with the same coordinates as the particles of the MCTDH wavefunction

Zcr L hP(Qp) (21)

The multidimensional integrals of Eq. (20) are then reduced to products of low-
dimensional integrals

1 1)
(o) o) 1 H o)) =

S el 1D [ o)) (P | B | o) (22)
r=1

and these low-dimensional integrals can be easily evaluated using the particle prim-
itive grids which have the dimension N¢ where d is the dimensionality of the par-
ticle.
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The effort for the algorithm can be estimated by a sum of two terms:
effort ~ ¢ sp*nPt + cyspn N (23)

where ¢; and ¢ are constants of proportionality. The first term is due to building
the mean-field matrices and calculating the time-derivative of the A-coefficients.
To build the mean-fields there are s terms in the Hamiltonian, and for each particle
the A-coefficient vector must be multiplied by the Hamiltonian matrices for all the
other particles. The time-derivative of the A-coefficients is obtained at the end of
these operations for virtually no cost. The second term is due to the operation of the
Hamiltonian on the SPFs, i.e. the operation of the s particle operators, represented
in the particle primitive grids, on each SPF for each particle (for potential terms
this becomes spnN¢ as the operator is diagonal in the primitive basis). The density
matrices also need to be inverted, but this effort, which scales as n?, is insignificant
compared to these two terms.

Thus if p is large, the effort for the algorithm is dominated by the building
of the mean-field matrices. If p is small and d large the second-term, that for the
propagation of the SPFs, dominates due to the high dimensionality of the functions.
Again we see the trade between the effort required for the coefficients and the SPF's
which can be altered by suitably combining DOF's together into particles, balancing
the reduced effort due to low p with increased effort due to increasing N¢.

A final aspect of the MCTDH algorithm that affects its ability to efficiently solve
the time-dependent Schrodinger equation is the ease of integration of the equations
of motion. Wavepacket dynamics are an initial value problem. Starting from the
wavepacket at ¢ = 0 it is propagated forward in time by integrating the equations
of motion, which are written above as derivatives of the time. If the derivatives are
smooth functions of time, then large time-steps can be taken. Unfortunately the
MCTDH equations of motion are strongly coupled. All the sets of SPFs depend
on each other on the A-coefficients through the mean-fields and the A-coefficients
depend on the SPFs through the Hamiltonian matrix, }C. The constant-mean-field
integrator has been tailored to the properties of the method [3, 28]. This uses the
different evolution time-scales of the mean-fields and single-particle functions to
separate the equations over a short time, and thus provide efficient integration.

2.3. Multi-State Calculations

For non-adiabatic dynamics systems have to be treated in which more than one
electronic state is involved. T'wo different approaches have been used to include the
electronic states. The first of these simply uses the equations of motion as written
above, but with an extra DOF added to represent the electronic degree of freedom.

U(q,...qfo,t) =

ST A5, 00 (@11 o (@t e () (24)
=1 =1

where « labels the electronic state. As a complete set of electronic SPFs is used

in general, i. e. n, = 0 where o denotes the number of electronic states, the SPFs

(»)

are time-independent and chosen as ¢ (a,t) = da,j,- Introducing electronic state
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functions |«) one may re-write the above equation as

Np—1 o

=3 3 S Aa ) ) (25)

i=1  jpa=1 a=1

This is called the single-set formulation as one set of SPFs is used to treat the
dynamics in all the electronic states.

In contrast, the multi-set formulation uses a different set of SPF's for each state.
One writes the wavefunction as

U= ZU: T |a) (26)
a=1

where each component function ¥(®) is expanded in MCTDH form

a - - « 1, ,Q
O gy, g t) = Y > AR L0 (Qut) oY (@Qpt) - (27)

je=1  je=1

Note that different numbers of SPFs can be used for the different states, signified
by the superscript .
The equations of motion also now require state labels:

iA(@) — Z ICOPIAB (28)
B=1

o

s(ra) _ (1 pra) (pra)) " (k.aB) (%)
ip (1 P >(p )62:171 o , (29)

where the superscripts on the matrices denote that the matrix elements are with
superscripted A-coefficients and SPFs. Thus the particle Hamiltonian matrices used
to build up the Hamiltonian matrix and mean-field operators are

KD = (3 | gled) | Py (30)
and
H[(lfz,a,@) _ <\Ij((ln,oz) | H(Ozﬂ) | \I’IE&6)> . (31)

where H(®P) = (a| H| ) denotes the (,3) electronic component of the Hamilto-
nian. If a # 3 the matrices K and H are in general not square and non-Hermitian.
The single set formulation requires fewer SPFs in total, and does not have to deal
with the problem that the SPFs of different electronic states are not orthogonal
to each other. In practice, however, the multi-set formulation has proved to be the
more efficient as the SPFs adapt better to the different states and the total number
of configurations required is less.
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3. Photoabsorption Spectra

Perhaps the easiest experimental observable to obtain is a photoabsorption spec-
trum. In the Condon approximation, which is appropriate for steady-state condi-
tions with incident white light, the absorption spectrum, o(w) can be calculated
from the Fourier Transform of the autocorrelation function

o(w) x w/_oo dt C(t)e™t | (32)

where the autocorrelation function is defined as
C(t) = (w(0)[w(t)) . (33)

A detailed derivation is given in Ref. [29, 30].

To obtain the autocorrelation function, the ground-state wavefunction is placed
on the upper surface at the Franck-Condon point: “vertical excitation”. This
scheme is shown in Fig. 1 for the excitation from Sy to S of a system in which
the upper state is coupled to a dark Sy state. It is then propagated on the ex-
cited state, i.e. it evolves under the influence of the excited-state Hamiltonian, and
C(t) is the overlap of the evolving function with its initial form. Greater efficiency
can be obtained if the initial wavepacket is real and the Hamiltonian symmetric
(H = HT) as then [31, 32]

C(2t) = (T @)v@) (34)

i.e. the overlap of the wavefunction at time ¢ with itself (not its complex conjugate)
gives the autocorrelation function at time 2¢. This means that C(¢) is obtained over
double the time of the propagation. This is a huge saving, not only directly due to
the shorter propagation time, but also indirectly as shorter propagations require
fewer SPFs. The initial wavefunction also does not need to be stored.

Spectra from the autocorrelation function have been obtained in a number of
different systems such as photodissociation [31], photo-absorption [19], and pho-
toelectron spectra [33]. Figure 1 shows the autocorrelation function and spectrum
from a 4-mode model used to investigate the photo-induced dynamics of pyrazine.

The main problem in obtaining spectra from the autocorrelation function is that
the Fourier Transform in Eq. (32) goes to infinity, whereas the simulation time is
finite. If C'(t) — 0 at large times, then there is no problem. This is the case in, e.g.
photodissociation, but not in bound-state problems such as the example in Fig. 1.
To remove errors due to the finite length, C'(¢f) can be multiplied by a damping

function such as
t
g(t) = cos <;T—T> © <1 - %) (35)

where O(1 — %) is the Heaviside function that switches from 1 to 0 at time 7.
This function smoothly forces C(t) to be 0 at 7. It has the effect of broadening
the spectral lines. The autocorrelation function may additionally be multiplied by
the factor

f(t) = exp(=t/T) . (36)

This damping function is equivalent to convoluting the spectral lines with
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Lorentzian functions, the width of which can be related to a homogenous broad-
ening due to experimental resolution.

4. State Populations

For the interpretation of photochemical processes, the state populations as a func-
tion of time are often required. The population is given by the expectation value
of the state projection operator

Po = (U|Po|¥) = (¥]a){a|¥) . (37)

The electronic states can be defined using two different pictures: the diabatic and
adiabatic. Both contain useful information. The former can be related to the elec-
tronic configurations of a molecule, while the latter are energy ordered states [7].

Wavepacket dynamics are usually performed in the diabatic picture, in which
inter-state couplings appear in the Hamiltonian as potential-like terms. The dia-
batic populations are then straightforward to obtain. In the multi-set formulation
the wavefunction has a component for each state, Eq. (26). The population of state
« is then the norm of this component

P = ||w(@)|2 (38)

In the single-set formulation, Eq. (24), the populations can be obtained from the
density matrix for the electronic degree of freedom.

The adiabatic populations are not so easy to obtain. The diabatic and adiabatic
wavefunctions are related by a position dependent unitary transformation

v(Q) =U((Q)¥(Q) (39)

where the rotation matrix is given by the eigenvectors of the diabatic potential
energy matrix at the point. This matrix transforms the diabatic potential matrix,
W, to the diagonal adiabatic potential matrix, V

Ut(QWU(Q) =V(Q) . (40)

Thus the projection operator for the adiabatic state « is

P =3 " 18)US Uay (] (41)
By

This operator unfortunately does not have the MCTDH product-form because it
is a complicated, non-separable function of the coordinates Q. To avoid having
to transform the wavefunction from the diabatic to adiabatic representation using
the full primitive grid, one may use the potfit algorithm [3, 34, 35] to transform
the projector to product form. This has been done successfully for a 6D model
of ethene [36]. Unfortunately, this approach is limited to systems with no more
than six or seven degrees of freedom, because the potfit algorithm need to keep the
function to be re-fitted — in general a potential but in this case Po({a), the electronic
matrix-element of the projector — in memory. For larger systems one has to turn
to other, more approximate methods. Fortunately, the accuracy required for state
populations is not high and so Monte-Carlo integration can be used to solve the
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multi-dimensional integral in Eq. (37). In Ref. [37] Monte-Carlo integration was
used to obtain adiabatic populations for a 14 dimensional system.

5. The Vibronic Coupling Hamiltonian

The vibronic coupling model adopted uses the well-known concept of diabatic elec-
tronic states [38-40]. Contrary to the usual adiabatic electronic states they are
not - except for isolated points in nuclear coordinate space - eigenfunctions of the
electronic Hamiltonian. Adiabatic electronic wavefunctions may have singular first
derivatives with respect to the nuclear coordinates, e.g., at conical intersections
of potential energy surfaces [6, 7, 10]. These important topological features have
emerged as paradigms for nonadiabatic excited state dynamics [6, 7, 11, 12]. They
are thus difficult, if not impossible, to deal with in a quantum dynamics treatment
in the adiabatic basis, because of diverging nonadiabatic - or derivative - coupling
terms.

These singularities are removed by switching to a diabatic electronic basis, by
a suitable orthogonal transformation. This is thus the method of choice for quan-
tum dynamics calculations. To be sure, the derivative couplings cannot be entirely
removed in this way [41], but the remaining terms are non-singular and usually
considered negligible for practical purposes. Also for our purposes they are ne-
glected, which may be considered as part of the model assumptions adopted. The
potential coupling terms appearing instead in the diabatic basis are expanded in a
low-order Taylor series in some suitable displacement coordinates. This constitutes
the multi-mode vibronic coupling approach [10] which is used here. For the general
case of n interacting electronic states we decompose the Hamiltonian into a kinetic
and potential energy part, Ty and Vj, of some reference electronic state, and an
n X n potential energy matrix W, describing the changes in potential energy w.r.t.
Vo in the interacting manifold (1 is the n X n unit matrix):

A~

H=(Tn+ Vo)1 +W (42)

The matrix elements of W are written as follows:

Won(Q) = Eo + > kMQi++ > 77QiQ; + ... (43)
i ij
W (@) = D N"Qi + 3 1" QiQj +... (n#n) (44)
) 2,]

The truncation of the Taylor series after the first-order or second-order terms
(the latter being shown here) is coined the linear or quadratic vibronic coupling
approach (LVC or QVC, respectively)[6, 7, 10]

In typical applications we consider a photo-excitation or -ionization process where
Tn and Vj relate to the initial electronic state (usually the ground state), described
in the harmonic approximation. The @; in Eq. (43) are then the relevant dimen-
sionless normal coordinates (harmonic frequencies w;) and we have

Wi 82 Wi
TN:—ZETQZZ ; VOZZ?Q? (45)

i
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The quantities E,, appearing in Eq. (43) have the meaning of vertical excitation
or ionization energies, referring to the centre of the Franck-Condon zone, Q = 0
(boldface denotes the vector of all coordinates). Because we take the diabatic and
adiabatic basis states to coincide at this geometry, the E,, have no counterpart in
the off-diagonal elements of Eq. (44). The other parameters appearing in these ex-
pressions are called linear or quadratic coupling constants, in an obvious notation,
either intra-state (for n = n’) or inter-state (for n # n’).

In molecules with symmetry elements, the latter can impose important restric-
tions on the modes appearing in the various summations of Eq. (43). These are
relevant, in particular, for the linear coupling terms for which they read:

I, @Tq®T T,y DTy (46)

Explicitly, a given vibrational mode with symmetry I'g can couple electronic
states with symmetries I';, and I')/ in first order only if the direct product on the
Lh.s. of Eq. (46) comprises the totally symmetric irreducible representation I"4 of
the point group in question. The generalization to the second-order terms should
be apparent, though it is less restrictive. From Eq. (46) one immediately deduces
(given an Abelian point group) that for n=n’ only totally symmetric modes enter
the Hamiltonian in first order. Thus - for electronic states of different symmetries -
the intra-state and inter-state linear couplings are caused by different sets of modes
[10]. This will indeed be the case for the examples below, as far as Abelian point
groups are concerned. For non-Abelian point groups there may be electronic states
degenerate by symmetry, and the above discussion has to be suitably generalized.
That is, the direct product I';, ® '), has to be replaced by its symmetric counterpart,
and the indices appearing in Eqs.(43,44) should be extended to cover also the
various components of degenerate irreducible representations. Consequently, also
non-totally symmetric modes may appear in the diagonal elements of Eq. (43) in
first order. This amounts to the Jahn-Teller effect which is dominated by symmetry
restrictions even more than for the case of Abelian point groups discussed above.
For details we refer to the large amount of literature in the field [42, 43].

Despite the importance of the diabatic basis for dynamical calculations, the adi-
abatic representation is useful at least in two different respects. First, the key
features of the adiabatic potential energy surfaces, such as minima of crossing
seams, double minima occurring at a reduced symmetry etc., are vital to inter-
preting essential features of the nuclear dynamics such as spectra and electronic
populations [6, 10]. Second, as already mentioned in the introduction, the adiabatic
surface are also needed to determine the various coupling constants entering Egs.
(43,44) from ab initio electronic structure calculations. The latter necessarily give
adiabatic quantities, at least in a direct sense. The comparison of the adiabatic sur-
faces underlying Eqs. (43,44) with ab initio results thus allows the parameters such
as coupling constants to be determined by requiring that the corresponding model
surfaces reproduce the ab initio data as well as possible. For the linear intra-state
couplings particularly simple expressions can be given [10], since these are just the
gradients of the potential energy surface with respect to the normal coordinates of
the modes in question:

k§") = (0V,/0Qi)|q=0 (47)

Similarly, for a two-state problem with a non-totally-symmetric active mode
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(coordinate @, frequency wy, ), the parabolic-plus-hyperbolic shape of the resulting
adiabatic potential curves V; and Va [10]

Vig = (B + E2)/2 + wuQi /2 £ \/(E1 — E2)?/4 + (AQu)? (48)

readily gives the following expression for the inter-state coupling constant:

102(V, — V3)?
A:\/§(5T%2)’Q:° (49)

In more general situations, such as three states interacting through the same
vibrational mode, the coupling constants may be determined by a least-squares
fit of the model eigenvalues to electronic structure data [44]. A general fitting
procedure for any size of system is also described below in Sec. 7.

We conclude this section by pointing out that the model nature of the Hamilto-
nian, Eqgs. (43,44), and its potential energy surfaces, apparently introduces restric-
tions on the type of problem to be treated, e.g., photochemical transformations
[11, 12]. More recently, an extension has been proposed and successfully applied,
where the model has been used only for the adiabatic-to-diabatic mixing angle [6].
This so-called concept of regularized diabatic states [45-47] allows the treatment of
general potential energy surfaces, but at the expense of losing the structural sim-
plicity of the Hamiltonian. As pointed out above, and will become further apparent
below, it is this structural simplicity, where all operators entering the Hamiltonian
are simple products of the coordinates, which brings the MCTDH algorithm to full
power. This would apparently no longer be the case with general potential energy
surfaces appearing within the concept of regularized diabatic states. Therefore, in
the applications presented below, we use the vibronic model in the original, direct
form as expressed by the Hamiltonian (42,43,44). Despite the restricted form it will
become clear below that the model covers a rich variety of phenomena and can be
applied to truly multi-dimensional problems.

6. Combining the vibronic coupling model with MCTDH

Perhaps the easiest way to show why MCTDH and the vibronic coupling model
Hamiltonian fit so well together is to look at an example. The calculation that really
proved the potential of the MCTDH method was the calculation of the absorption
spectrum of pyrazine explicitely including all 24 vibrational modes [19]. The first
two bands of the absorption spectrum of this molecule provide a classic example of
a conical intersection. The lower band has a well-defined vibrational structure, as
expected for a bound state. The upper band is intense and fairly featureless [48].
This lack of structure was shown to be due to a conical intersection between the
S1 and Ss states, which results in the short lifetime in the upper electronic state
[49].

The pyrazine molecule has 24 vibrational modes. Its equilibrium geometry has
a point group Doy, and the coupled S; and Sy states have Bg, and Bg, symme-
try respectively. Thus the quadratic vibronic coupling model Hamiltonian can be
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1€G3
+ Z <:u0 MZJ) QZQ] (50)
(4,J)€Ga g

where (G; are the 5 symmetric modes that appear linearly on the diagonal and
Gz the by mode that provides linear coupling between the two states. G are the
pairs of modes whose product is totally symmetric and so appear with quadratic
and bilinear terms on the diagonal, and finally G4 are the pairs of modes whose
product has symmetry by, and thus provide bilinear coupling terms.

A 4-mode model, including the coupling mode v1q, and three of the a;, modes,
Vga, 1 and rvg,, was shown by Domcke and co-workers to be able to reproduce
the features of the Sy spectrum using standard wavepacket dynamics calculations
[49]. The envelope, however, was only reproduced by adding a phenomenological
broadening to the spectrum, damping the autocorrelation function with a fast
relaxation time of 30 fs. This must be due to the coupling between the 4-mode
“system” and the “bath” provided by the remaining 20 modes. A full calculation
of the spectrum requires the model to be extended to second order, including
quadratic and bi-linear terms, and thus all 24-modes are involved.

The 174 parameters required for the second-order model were calculated by Raab
et al [19] using the simplest possible method for calculating electronic states, config-
uration interaction with single excitations (CIS). The spectrum was then obtained
from the Fourier Transform of the autocorrelation function (see Sec. 3), calculated
using the MCTDH method. After minor adjustment of key parameters, the agree-
ment with the experimental spectrum is seen to be very good (Fig. 2 (a)). Note
that a small, 150 fs, damping has been added to the autocorrelation function to
produce this spectrum to allow for the finite propagation time of the simulation.

The power of the MCTDH method can be seen in the fact that this calcula-
tion was at all possible using the available hardware in 1999. The technical details
of the basis sets used are summarised in Tab. 1. The rows correspond to differ-
ent models studied: the Domcke 4-mode model; a 12-mode model that augments
these 4-modes with the remaining 8-modes with g-symmetry; the full 24-mode sys-
tem. Two 24-mode calculations are listed with different numbers of SPFs. The
second column details how the degrees of freedom were combined together to form
multi-dimensional “particles”. As discussed in Sec. 2.2, this keeps the length of
the wavefunction expansion short. The 4-mode calculation used 4 one-dimensional
particles, i.e. 4 sets of one-dimensional functions were used as the SPFs. The 12-
mode calculation used five particles with, for example, the 140, and vg, combined
together to give a 2D particle. The 24-mode calculation used 8 particles.

The wavefunction expansion length is the total SPF basis size, given by the prod-
uct of the number of SPFs per particle, summed over the 2 states. The numbers are
given in column 3. For the 4-mode and 12-mode calculations the expansion length is
10,720 and 45,240 respectively. For the two 24-mode calculations, calculation I has
a length of 502,200 and calculation II 2,771,440. The 4-mode and 12-mode are both
converged with respect to the autocorrelation function, and hence the spectrum.
A full test of convergence could not be made for the 24-mode calculations, but the
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number of SPFs for 24-mode II were chosen so that the population of the highest
natural orbital was less than (.01, suitable for averaged quantities. A comparison
with the smaller 24-mode I calculation supports this. The autocorrelation function
is shown in Fig 2 (b) and the all important first 2 peaks are nearly identical.

The SPFs need to be described by a primitive basis set. For this, a harmonic
oscillator DVR basis was used [3], which has been found to be very efficient for
such bound-state problems. The number of functions required for each degree of
freedom are given in column 4. Thus 40 DVR functions were used for the vyg,
mode, 32 for the g, mode etc. The primitive basis size for each particle is given by
the bracketed numbers so, for example, the primitive basis size of the 2D particle
containing the v1g, and vg, modes in the 12-mode calculation is 1280. For efficiency,
it is important to keep the primitive basis sizes for the various particles similar in
length.

The total primitive basis, that which would be required in a standard wavepacket
calculation, is given by the product of the number of grid points for all modes.
For the 4-mode, the 12-mode and the 24-mode problems these were, respectively:
245,760; 2.6 x 10'3; and 6.4 x 10%°. The contraction efficiency of the MCTDH
method is then the ratio of the MCTDH wavefunction expansion length to the
primitive basis size. For these large calculations the expansion length is clearly a
much smaller number than the primitive basis.

Finally, we should mention the resources required for these calculations. For
propagation lengths of 150 fs, the 4-mode calculation required only 20 minutes
on an IBM RS/6000 workstation and 16 MB memory. Very cheap for a full 4-
dimensional quantum dynamics calculation. For the 12-mode calculation on the
same machine, this rose to 10 hours and 45 MB memory. For the large 24-mode
IT calculation, a CRAY T90 vector machine was used and 485 hours of CPU-time
was required with 660MB memory. This is a substantial, but manageable amount
of time. The power of the method again can be seen in that the smaller, 24-mode
I, calculation required only 100 hours and 205 MB to produce a spectrum that
is of a good quality. Today, as they require less than 1GB of memory, all these
calculations can be done on a desktop PC.

7. Examples

A number of systems have been treated using the vibronic coupling model. The
first was the butatriene cation [8]. In this molecule, the first excited-state has 2By,
symmetry and non-adiabatic coupling to the 2ng ground-state takes place via the
torsional mode, which has a,, symmetry. This leads to a conical intersection between
the two states, the presence of which is responsible for the “mystery band” seen in
the photo-electron spectrum between the bands expected for the states [50]. The
systems treated using the MCTDH method, which include the butatriene cation,
are listed in Tab. 2. The table shows the property studied, and the size of the model
used. Below, a few calculations are looked at to demonstrate the work.

7.1. Allene cation

The calculation of the pyrazine absorption spectrum detailed above showed the
importance of including second-order terms for a complete treatment. A further
example where second-order terms must be included into the model to correctly
describe a spectrum is found in the photo-electron spectrum of allene. The equi-
librium structure of allene has the point group Dsg. Doubly degenerate states of



March 13, 2008

12:15 Dynamical Systems paper

17

the ion, labelled 2E, are thus subject to £ ® 3 Jahn-Teller coupling, where the
symmetry of the state is lowered by coupling to pairs of modes one with By and
one with By symmetry. The A%2E state is further pseudo-Jahn-Teller coupled to
the B2?B, state via the doubly degenerate E modes.

The photo-electron spectrum [51] for this coupled band shows a well-structured
lower energy portion that could be explained by the Jahn-Teller coupled A band
with progressions from one symmetric stretch and one Jahn-Teller active mode [52].
Later work then assigned the diffuse higher part of the spectrum to the pseudo-
Jahn-Teller coupled system [53]. However, the assignment of the lower part of the
spectrum was found to be incompatible with the coupling when looking at all the
possible modes as there are three strongly coupled modes with relevant frequencies.
The answer was that the second order coupling between these modes leads to
significant changes in the frequencies by what is termed Duschinsky rotation. A
simulation with all 15 modes and 3 states, while still not in perfect agreement with
experiment, supports this [33].

An interesting feature of the allene cation system is that the the doubly-
degenerate ground state wavefunction can be written so that each component has
a hole at different ends of the molecule. This molecule thus provides an interesting
model for charge transfer along a conjugated chain - starting in one component of
the ground-state is equivalent to removing an electron from one end of the molecule
and population transfer between the components then monitors the transfer. Due
to the vibronic coupling this is found to be an ultrafast process [54].

The problem when including second-order terms is not only the increase in sys-
tem size, but also the number of parameters that need to be determined. The linear
model for pyrazine has 13 parameters and the second-order model 174. Similarly,
the linear model for allene has 25 parameters and a further 16 second-order param-
eters, thought to be the most important, were added from the many possible. In
these examples, the parameters were calculated by hand from information obtained
at a few points on the potential energy surfaces using the formulae given in Sec. 5.
This quickly becomes a very laborious task for more modes, and more so if many
states are involved.

To deal with this fitting problem, an automated scheme has been set up and
implemented as the VCHAM program [55], which is distributed with the MCTDH
package [56]. This was first used to calculated the 79 parameters in a quadratic
model of the butatriene cation [57]. The program sets up appropriate geometries
for calculating the energies along cuts through the potential surfaces, collates the
information, and then fits the parameters so that the model matches the calculated
adiabatic surfaces. In a recent example, the VCHAM procedure has been used to
obtain parameters for a vibronic coupling model of the lowest six excited states of
benzene at the CASSCF level, revealing the different types of coupling present in
these states [58]. Going to a quadratic model, which is necessary in this case for a
good fit, requires a large number of parameters which are not independent.

The allene radical cation demonstrate the utility of this approach [59]. The sur-
faces for the A?E/B? B, coupled states, together with the C?A; have been studied
[59]. All four states are required for a good fit. Furthermore, it was found during
the fitting process that satellite states also had to be included to get the form of the
potentials along the low frequency doubly degenerate modes that are important
in the pseudo-Jahn-Teller coupling. Fourth-order terms were also required along
some modes. The procedure also allowed the use of electronic structure methods for
which analytic gradients are not available as only single-point energies are required.

The quality of the fits along the most important modes is shown in Fig. 3. It
is clear that despite the simplicity of the model, it is able to describe the anhar-
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monicity of the adiabatic surfaces extremely well. The model for the related, but
larger, pentatetraene system has also been calculated and used to interpret the
experimental spectrum [60].

7.2. Cr(CO)s

By not focusing on just the intersection region, this fitting procedure also allows a
better analysis of the global surfaces, and can lead to new findings. For example,
the ground-state adiabatic surface of Cr(CO)s shows the moat and three minima
typical of a second-order Jahn-Teller interaction in the ground-state that is doubly
degenerate at Dsj, geometries [61]. On fitting the surfaces globally, however, the
topology was actually found to be predominantly due to an (F @& A) ® e pseudo-
Jahn-Teller interaction between the ground state and the lowest singly degenerate
excited state [62]. The dynamics in a pseudo-Jahn-Teller system are distinct from
those in a Jahn-Teller system: in the latter a wavefunction propagated on the lower
adiabatic surface is subject to the geometric phase effect while in the former it is
not [63]. This has consequences for the shape of the evolving wavepacket.

Calculations were performed using the 3-states and the five most important vi-
brations, namely the two doubly-degenerate pairs that account for both the Jahn-
Teller and the pseudo-Jahn-Teller coupling in addition to the symmetric breathing
mode. The dynamics after forming the Cr(CO)s molecule by photodissociation is
shown in Fig. 4. The results of two calculations are shown: including just the 2
strongest coupling modes, and including the 5 most important. The calculation
of the adiabatic populations of the 5-mode model is a huge job - requiring the
multi-mode transformation operator on the full primitive grid (see Sec. 4) which
has 1.02 x 10'!" points. A Monte-Carlo integration scheme was used for this.

The diabatic populations represent the population of the states with electronic
wavefunctions dominated by chromium d-electron configurations ® ¢ = dizdzzdiy,
®; = d%zdizd;ydig_yz and ¢z = dizdzzdig_yz respectively. The system starts
in the diabatic A state. In the 2-mode calculation, after 100 fs there is a large
transfer of population to both the other states. After another 150 fs there is a
further transfer, after which little is left in the initial state. The transfer is similar,
but less smooth in the 5-mode calculation. Earlier transfer is also seen and the
second transfer is weaker due to the spreading of the wavepacket in the larger
available space reducing the effect of the recurrence.

The adiabatic states in this system are effectively (i)sl = &, — &g, 5332 = &,
and (i)ss = ®; 4+ ®3. In these states, the population transfer in the 2-mode model
is more dramatic: it is effectively finished after 100 fs, having transferred 90% of
the population to the ground-state. In the 5-mode model, the transfer out of S5 is
less, and the S3 state becomes more populated.

Fig. 5 plots snapshots of the adiabatic wavepacket motion over the ground and
first-excited states for this system. The plot is in the space of the doubly-degenerate
vibrational mode that has the strongest coupling. The PESs for the lowest 2 adia-
batic states are shown in the figure, with three minima on the lower state at Cly,
symmetry, and three narrow minima on the upper state all due to the pseudo-
Jahn-Teller coupling between the three diabatic states. The intersection between
the states is at the centre of the plot at the Dgp geometry. This plane corresponds
to pseudo-rotation of the molecule: moving from minima to minima corresponds
to a rearrangement of the three equatorial carbonyl groups [61].

The dynamics start on the first adiabatic excited state with a Cy, structure,
distorted along the ()2 mode. This initial condition is that formed by the sudden
removal of a single carbonyl group and the wavepacket at this time is taken to
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have the form of the undisturbed ground-state vibrational eigenfunction for the
vibrations. After 80 fs the wavepacket has reached the Dgj geometry and popu-
lation transfer to the ground-state takes place. This bifurcates and returns to the
D3y, centre after 240 fs. There is a small recurrence to the upper state seen in the
adiabatic populations at this time. Finally, the wavepacket on the ground-state
reaches the right-hand side of the well after 340 fs. This time-scale fits the time-
scale of coherent motion measured by Trushin et al for this system [64]. Note that
the wavepacket on the ground-state in Fig. 5 is symmetrical, in contrast to the plot
in the original paper (Fig. 8 in Ref. [62]). This was due to a plotting error in the
analysis.

7.3. Benzene cation

The ability to follow the dynamics in a manifold of coupled states is exemplified by
calculations on the benzene cation [44, 65]. The photoelectron spectrum of benzene
has a number of bands in the region 9-20 eV [66]. The surfaces for the lowest five
bands (8 states) have been fitted using the linear vibronic coupling model [44].
These states are all vibronically coupled and Fig 6 shows the coupling along an
effective mode.

Large MCTDH calculations have shown that the model is able to reproduce the
experimental spectrum [65]. These then allow a detailed analysis of the modes im-
portant for the system dynamics. Fig 7 shows the state populations after starting in
the non-degenerate C state. The modes required are the symmetric breathing mode
and the doubly degenerate modes with ey, symmetry that provide the Jahn-Teller
coupling within the X and B states. The pseudo-Jahn-Teller coupling between the
B and C states is provided by modes with ey, symmetry, that between the X and
B states by modes with by, symmetry. An effective mode was used to model the
coupling provided by the pair of modes with this symmetry.

The population is seen to decay rapidly from the C state and after 200 fs the
population is shared equally by the B and X states. Initial transfer occurs to the
B state, followed by transfer to the ground-state. Similar results were obtained
ignoring the degeneracy of the modes (Fig. 7(b)). These findings are of relevance
for the fluorescence dynamics of the benzene cation. They provide a pathway for
ultrafast C — X nonradiative relaxation, and thus explain the absence of emission
in this system. Similar calculations have also been performed for the higher excited
states of Fig. 6 and have been related to the fragmentation dynamics of the cation
[67]. Finally, the studies have been extended to the monofluoro derivative [68,
69] and also the three difluorobenzene isomers [70] and the characteristic changes
observed experimentally for fluorination been reproduced and interpreted in this
way.

8. Parameterised basis functions: G-MCTDH
In the G-MCTDH method [23] the configurations for the wavefunction ansatz
Eq. (2) are written

m

p
©5(Q1,...Qpt) = [P @nt) T] 97 (@n.t) (51)

k=1 rk=m+1

where the first m particles are described by the flexible SPF's described above which
are expressed using the primitive basis functions, and the remaining particles are
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described by SPFs which are defined using a small number of parameters. The
idea is that by propagating a limited set of parameters rather than the functions
themselves a huge saving of memory can be made. Part of the system can be treated
using the usual grid-based wavepacket methods described above, and part using
the parameterised functions. As the latter may introduce approximations into the
dynamics, in this way a system can be described using a hierarchy of modes with a
“full quantum-mechanical” part coupled to a “approximate quantum-mechanical”
part.

While the method is completely general, and any parametrised form could be
used, a simple and suitable form is the Gaussian:

97 (Qu ) = exp[Qu - ¢ (1) - Qu+ €70 - Qe (0] . (52)

The parameterised functions are thus referred to as Gaussian Wavepackets
(GWPs). Both “thawed” Gaussians (with a time-dependent width matrix, Cg-“) (1))
and “frozen” Gaussians (with a fixed width) have been employed [71, 72]. In nu-
merical applications, however, frozen Gaussians are found to be more robust. In the
limit that only GWPs are used to describe the wavefunction, the method is termed
the variational multi-configurational Gaussian wavepacket (vMCG) method.

Equations of motion can be set up using the variational principle as before.
The main changes to those for the flexible SPFs and A-coefficients are due to the
non-orthonormality of the GWPs. Defining the particle GWP overlap and time-
derivative overlap matrices as

S — (gl | gty (53)

1
) =il | g (54)
and using a configuration overlap matrix

Sy = (@1 | @) (55)

the equation of motion for the A-coefficients can be written

iA =81 (/c -y T<*”~>> A . (56)

The equations for the SPFs are unchanged, but it should be noted that the den-
sity matrix elements Eq. (12) contain the overlap matrices and Eq. (13) must be
accordingly re-written. Finally, the equations of motion for the GWP parameters
can be written

A" = [CW} Ty (57)

where the parameters have been arranged in a vector, A.
The elements of C are complicated functions of the overlap and density matri-
ces, and the elements of Y functions of the mean-fields and Hamiltonian matrix
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- . (@0) _ |g(a0)g-
o S (- [505]) o
Cinga = pi (85~ [s0571599] ) (59)
ij

where a refers to a parameter and i to a function. The superscripted overlap and
Hamiltonian matrices have matrix elements involving the derivatives of the GWPs
with respect to the parameters

8) _ [/ 99 | 99
% _<8Am axw> (60)
@) _ [/ 0i | ~| Og
o = (2| 2 o

which are simply Gaussian moments. For example, if ;o = fi(a)

(@0) _ / 0gi
Sy = < 9e(®

gl> — (9:1Qul ) (62)

Note that, as for the usual SPFs, the projector out of the space spanned by GWP
functions

L=P=1-3 [g)5;"{9; | (63)
]

is contained in both the Y vector and C matrix. This is one of the most important
properties of the MCTDH method, ensuring that changes are made to the basis
set only as dictated by the evolving wavepacket, and ensuring fast convergence.

The method is an exact quantum dynamics method provided all the integrals in
the equations of motion are calculated exactly. In practice, the Hamiltonian matrix
elements are evaluated by making use of a local harmonic approzimation (LHA) in
which the potential is expanded to second-order for each GWP

f f
Vi=Vo+ Y ViQa+ 3 ViQaQs (64)

a=1 a=1

where the value V) and the derivatives V., Vo/c/ﬁ are evaluated at the centre point.

G-MCTDH can provide a useful link to other types of Gaussian wavepacket
methods and time-dependent coherent-state basis set approaches. Following the
work of Heller [73], most of these methods are based on GWPs that propagate along
classical trajectories to model the true evolving wavefunction. These methods are
all based on the well-known result from quantum mechanics that a wavefunction
with a Gaussian shape in a harmonic potential retains its shape and the centre of
the wavepacket follows the classical trajectory.

One can, for example, use a superposition of Gaussian functions with fixed
widths, known as frozen Gaussians [74],

U t) =D gi(x.1) (65)
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Writing the GWPs as separable products of one-dimensional functions with the
form

9;(x) = exp §(—a;j(x — z;)* + ip;(x — z;) + i) (66)

where a; is the width, ~; the phase, and the parameters x;, p; are the position and
momentum of the centre of the function which evolve according to

g =2
J m

=V

the classical equations of motion. Due to this underlying classical nature, these
methods are not readily applicable to the description of quantum phenomena such
as tunnelling and curve crossing. More sophisticated methods have been developed
[75, 76] and even applied to non-adiabatic systems [77]. These methods, however,
suffer in general from numerical instabilities, insufficient coverage of the relevant
phase space, and the fact that different initial choices for the representation of the
wavefunction can lead to different results.

The spawning method of Mértinez and co-workers [78, 79] is aimed at describing
non-adiabatic dynamics. It uses the ansatz

U(x,t) = Z Ajgj(x,t) (67)

The expansion coefficients introduce the coupling required to describe quantum
phenomena, and have the same time-evolution as the G-MCTDH method, Eq.
(56), but the GWP basis functions follow classical trajectories. A clever algorithm
is then used to “spawn” new functions where they are required, e.g. when the
wavepacket bifurcates in a region with strong non-adiabatic coupling. The method
has been applied to a number of problems an successfully explains many observed
phenomena in the photochemistry of polyatomic molecules.

Connection from classical-trajectory based Gaussian wavepacket methods to G-
MCTDH can be made by first noting that the Gaussian functions in Eq. (52) and
Eq. (66) are related by the transformation

§a = 20qq + Do - (68)

Equations of motion for the centre of the G-MCTDH GWPs can be cast in a form
that demonstrates the relationship to semi-classical methods [80]. In general,

i pl/8 *COIT
_ + 69
qi mg qi3 (69)
. / 4C]20l " - COTT
Pip=—Vig = ——qjp + E Viepglia + P13 - (70)
(e}

b#a

where ag" and pjg " are terms containing correlations between the GWPs. If the

Gaussians are uncoupled, for example if the basis set is complete, then these terms
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can be ignored. Furthermore, for coherent states in a harmonic potential,
MW
Cja = Oé = ; Vo/ll = mawg{ > (71)

and the final 2 terms of Eq. (70) cancel. Thus in this limit the GWPs in the
G-MCTDH method follow classical trajectories.

This ideal coherent-state limit generally does not correspond to dynamical situ-
ations of interest and the coupling between GWPs means that they do not follow
classical trajectories. The resulting convergence properties of the coupled trajec-
tories are much better than classical trajectory based methods. There is also no
dependence in the result on the choice of initial functions - the underlying varia-
tional character leads to the same result for the same number of functions however
chosen initially. The coupling between the GWPs means that the method is also
able to treat phenomena such as tunnelling and non-adiabatic transitions. In one
of the first applications of the vMCG method to the Henon-Heiles potential, tun-
nelling was observed, with GWPs escaping from the unbound potential [72].

The G-MCTDH method, like all the GWP methods, suffers from inherent nu-
merical instabilities. The GWP phase factors cause fast oscillations in the overlap
matrices, which are difficult to integrate, and the coupling between the expansion
coefficients and GWP equations of motion is strong. And while the result may not
depend on the choice of initial functions the numerics do. The solution is to use
the relationship between the GWPs and an orthonormal set of functions that span
the same space. This allows the coefficients to be propagated in the orthonormal
basis (which approximates the MCTDH SPFs) while calculating all the matrix el-
ements in the GWP basis. The resulting algorithm allows use of the efficient CMF
integration scheme, and stable propagation with good step sizes results [80].

The first application to non-adiabatic dynamics was a study on the butatriene
cation. The dynamics of this system calculated by different methods is shown in
Fig. 8. In (a) a comparison is made between wavepacket dynamics and trajectory
surface hopping [81]. Surface hopping uses a “swarm” of classical trajectories to
simulate the evolving wavepacket. On reaching a region where non-adiabatic cou-
pling is strong a trajectory may change from one surface to another according to
a probability criterion. This is a simple form of molecular dynamics, easy to im-
plement, applicable to large systems, and often able to deliver useful information.
Surface hopping was introduced by Tully [82, 83] has been developed widely by
Truhlar and co-workers (see [84, 85] and Refs. therein).

The five lower panels represent the evolving adiabatic wavepacket as snapshots of
the density at 10 fs intervals. Eighty trajectories were run, and the coordinates of
each are represented by crosses. These calculations were made using direct dynam-
ics, with the PESs calculated on-the-fly using quantum chemistry calculations at
the CASSCEF level (for a review of direct dynamics see [24, 86]). The contours are
the adiabatic density taken from converged MCTDH calculations, using a vibronic
coupling model Hamiltonian fit to the same level of electronic structure theory. The
top panel shows the analytic potential energy surfaces as contours plotted in the
space of the two modes that provide the main non-adiabatic coupling, the central
C—C stretch vibration and the torsional motion. The tight upper cone is on the
right-hand side, while on the left the lower surface shows the double minima and
ridge caused by the coupling to the upper state. The wavepacket snapshots are
plotted projected into the same space.

The dynamics start by a vertical excitation to the upper diabatic state. This is
shown by the Gaussian shaped wavepacket on the upper adiabatic surface. A very
small portion is also seen on the lower surface. The wavepacket moves across the
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upper cone and, after 10 fs, meets the conical intersection. At this point a large
population crosses to the lower state, where it bifurcates and moves down the two
channels on the lower adiabatic surface. After a further 30 fs the wavepacket returns
to the intersection region and a recurrence occurs with population returning to the
upper state.

The surface hopping calculations follow the initial dynamics well, with the trajec-
tories clustering around the wavepacket. Density then appears on the lower surface
at 10 fs and so the time-period for reaching the non-adiabatic region is correctly
described. After this crossing, however, the trajectories no longer stay with the den-
sity and spread out over the surfaces. This is due to the lack of nuclear coherence
in the surface hopping method.

Fig. 8 (b) compares the full wavepacket on the lower surface with that calculated
by the vMCG method using a small basis set of only 32 GWPs [87], 16 in each
state. The approximate wavepacket on the right panel is thus created using fewer
trajectories than the surface hopping calculations. It is seen to follow the full packet
qualitatively, including the bifurcation, the recurrence and some of the structure.

A more recent study benchmarks the G-MCTDH method, returning to the classic
model of pyrazine examined above [80]. A comparison of the vYMCG method to the
use of classical GWPs was made to demonstrate the convergence properties. As
the model is a second-order polynomial the converged result is identical to the full
MCTDH one. Fig. 9 shows the autocorrelation function for the 4-mode pyrazine
model in the 2 cases. The vMCG method already has the first peak correct with a
mere 40 basis functions (20 in each state), and is converged with 160. In contrast
the classical GWPs require a few hundred basis functions to get the first few peaks
reasonable, and the autocorrelation is still not converged with many thousand
functions.

A demonstration of the potential of the method is given in a 10-mode pyrazine
model study. This takes the usual 4-mode model and adds a further 6-modes se-
lected so that the autocorrelation function has a strong similarity to that from
the full 24-mode calculation. The resources required are listed in Table 3 for cal-
culations producing a converged 300 fs autocorrelation function using MCTDH,
G-MCTDH and vMCG. Frozen Gaussians were used throughout.

The 10-modes were combined together into 4-particles. In the MCTDH calcula-
tion, a primitive basis set of harmonic oscillator DVR functions was used for each
mode. The numbers of these functions for each particle are listed in the first col-
umn. The single-particle functions were then described on a grid that is a product
of the one-dimensional primitive grids. Thus, for example, the first particle had
a primitive grid of 40 x 32 = 1280 points. The G-MCTDH calculation treated
the 4-mode system using a primitive grid and the remaining modes using GWPs.
The vMCG calculation treated all particles using GWPs. The number of SPF's or
GWPs used for each particle are then listed, with a number for each state. Thus
the MCTDH calculation required 14 SPFs for the v19,, Vg, particle in the lower, S7,
state and 11 SPF's for the upper, S state, while the vMCG calculation required
60 GWPs for this particle in both states.

The line Num (SPFs) shows how many numbers were required to represent the
SPFs and GWPs. For the MCTDH calculation this is the number of grid points
per function multiplied by the number of functions. For the GWPs each function

requires one number per mode plus one (£ ()

;7). The effect of the fewer numbers
required to represent the parametrised GWP functions is clear. The line Num
(A-vec) is the number of expansion coefficients in the A-vector. Here it is clear
the effect of the larger number of GWPs required compared to the SPFs. This is

particularly the case for vMCG, where a lot of GWPs are needed to describe the
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wavepacket in the space of the strongly coupled modes.

The final effect of the payoff for fewer numbers to describe the basis functions
using GWPs against the resultant more configurations is seen by the memory and
CPU usage which are both smallest for the G-MCTDH calculation. Only 49 MB of
memory and 3 hours of CPU-time is not much for a 10-mode quantum dynamics
calculation of an autocorrelation function out to 300 fs. It should be noted here
that a reasonable spectrum can be obtained using G-MCTDH with an SPF / GWP
basis of [12,9], [6,5], [8,8], [10,10] functions for the particles in the order listed in
the table. This required only 24 MB and 0.75 hrs and is shown in Fig 10. The peaks
are all in the correct places, and the intensities are not far off. Thus the essential
physics of the problem is being well described in a very cheap calculation.

9. Summary and conclusions

Conical intersections are now known to be ubiquitous in photochemistry, and an
understanding of their properties is essential, yet difficult due to fact the nuclear
and electronic motion is coupled in this region. The dynamics must therefore be de-
scribed using quantum mechanics, and the number of modes often coupled together
in these systems is beyond the reach of most quantum dynamics methods.

The MCTDH method is a powerful tool, able to handle more nuclear degrees
of freedom than standard wavepacket dynamics. The properties of the method,
and how this is useful for multi-dimensional dynamics has been outlined above. In
particular, the MCTDH equations conserve the norm and, for time-independent
Hamiltonians, the total energy. MCTDH simplifies to Time-Dependent Hartree
when only one basis function is used for each mode. Increasing the basis size recov-
ers more and more correlation, until finally the standard method (i. e. propagating
the wave packet on the primitive basis) is used. Hence with MCTDH one can almost
continuously switch from a cheap but less accurate calculation to a highly accurate
but expensive one. This is a useful characteristic in the study of multi-dimensional
Systems.

The vibronic coupling model Hamiltonian provides a good starting point for the
realistic study of photochemical systems in which non-adiabatic effects play an
important role, it is in the right form for MCTDH. In its simplest form, the linear
vibronic coupling model, it has been shown to correctly describe the dynamics of a
system as it passes close to and through a conical intersection connecting different
electronic states. Extensions to higher orders then add more details, important for
describing the dynamics at longer time-scales and at geometries away from the
intersection.

Fitting the model to the adiabatic surfaces provided by electronic structure cal-
culations provides a suitable way of providing the diabatic surfaces and couplings
required without the necessity of defining the diabatic functions themselves. In
fact the model provides a good way of providing these functions. The use of fitting
routines can provide the many required parameters in a semi-automatic way from
a small number of single-point ab initio calculations at suitable points.

Non-adiabatic dynamics is by its nature multi-dimensional: often the motion of
a number of modes is coupled. Here the power of the MCTDH method has proved
very successful in studying these systems. The form of the vibronic coupling model
is automatically in the form required, and calculations including 10 or more modes
and a number of electronic states are presently feasible. The systems studied to
date have provided an invaluable insight into the dynamics of these systems.

On-going work will enable more modes to be treated with greater accuracy. The
G-MCTDH is a step in this direction. A different approach, not covered in this
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review, is the multi-layer formalism implemented by Wang [88]. At the lowest level,
the wavepacket is made up of an MCTDH wavefunction high-dimensional SPFs.
These are then propagated using the MCTDH algorithm itself in a next layer using
lower dimensional SPFs, and so on. In this way a spin-boson problem including
thousands of modes can be treated [88]. This approach could tackle systems of
hundreds of atoms, and be the way forward in using quantum dynamics to treat
general chemical problems. Recent studies on proton transfer in condensed phases
[89] and the electron transfer dynamics in the dye molecule coumarin bound to a
semiconductor surface [90] highlight this potential.

A final development to be mentioned is the effective mode formalism. [91, 92].
This formalism will certainly help by providing a framework for the reduction of a
huge system. After dividing the modes into a “system” and a “bath”, the vibronic
coupling model can be reformulated in a hierarchy of Hamiltonians, enabling an
analysis of the important dynamics with a limited effort. This has been used, for
example, to study the quantum dynamics in a polymers [93].
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Table 1. Technical details of the MCTDH calculations of the absorption spectrum of pyrazine Ref. [19]. The
round brackets denote the combination of vibrational modes, the square brackets the number of SPFs used for
the representation of the wavefunction in the S; and Ss state. The number of modes in one combination define
the dimensionality of the corresponding SPFs. These SPF's are represented on a grid whose size is given by the

product of the number of grid points used for each mode of the corresponding combination.

model Combination Number of Number of
of modes grid points SPFs [S1, S2]
4 mode V10as Y6a, V1, V9a 40, 32, 16, 12 [10,8],[16,10], [7,6], [7,6]
12 mode (v10a, V6a), (V1, V9a), (40, 32), (20, 12), [14,11], [10,8],
(V27 V6b, VSb)7 (V47 V5)7 (47 127 24)7 (24) 8)7 [676]7 [776]’
(V7b7 V8a, V3) (47 87 12) [575]
24 mode I (V10a7 V6a)7 (Vlv V9a, Vga)v (40y 32)7 (207 12, 8)7 [1279]7 [675]7
(V27 V6b, V8b)7 (V47 Vs, V3)7 (47 8, 24)7 (247 8, 8)7 [473]7 [573]
(V16a7 V12, V13)7 (Vlgln V18b)7 (247 20, 4)) (727 80)» [473]’ [676]
(v18a, V14, V194, V17a), (6, 20, 6, 6) [4,4],
(V2065 V16, V11, V7b) (6, 32, 6, 4) (3,3]
24 mode II same as I same as I [14,11], [8,7],
[6,5], [6,4],
(4,5], [7,7],
(5,5],
3,4]

Table 2. Calculations on non-adiabatic systems using the MCTDH method in combination with the vibronic
coupling model Hamiltonian. f is the no. of nuclear degrees of freedom and s the number of electronic states
included in the calculations.

Molecule Phenomenon f s Ref.
pyrazine system-bath IVR 24 2 [37, 94]
pyrazine absorption Spectrum 24 2 [19]
allene photoelectron spectrum 15 3 [33]
benzene photoelectron spectrum 13 5 [65]
pentatetraene photoelectron spectrum 21 5 [60]
Cr(CO)g photodissociation mechanism 5 3 [62]
Cyclobutadiene photoelectron spectrum 6 3+2 [95]
benzene time-resolved photoelectron spectrum 3 4 [22]
butatriene photoelectron spectrum 18 2 [57, 81]
ozone photodissociation 3 2 [96]
furan absorption Spectrum 13 4 197]
cyclopropane photoelectron spectrum 14 4 ]98]

Table 3. Computer resources used for calculations of the absorption spectrum of the pyrazine molecule using a
10-mode model. The upper part of the table details the single-particle function and primitive basis. Column 1
lists the modes and how they were combined into particles. Column 2 gives the no. of harmonic oscillator DVR
functions used for each mode. Columns 3-5 give the no. of single-particle functions used for each particle and each
state using different methods. The lower part of the table details the resources required for each calculation. The
first row shows how many numbers are required to describe the single-particle functions and GWPs. The second
row how many numbers are required to describe the A-vector. The third and fourth rows show the memory and
cpu-time required.

Modes N n (MCTDH) n (G-MCTDH) n (vMCG)
V100: Von (10,32) 14,11 14,11 60,60

V1, Vg (20,12) 87 8,7 60,60

Vo, Ve, Vsas Vs (4,8,8,24) 10,10 20,20 20,20

V19b V18b (72,80) 10,10 20,20 20,20
Num (SPFs) 273680 35900 1040

Num (A-vec) 18900 91600 2880000
Memory(MB) 148 49 406

CPU(hours) 11 3 58
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Figure 1. Scheme for the vertical excitation of a system from the Sy state to Sa. The left panel shows
the ground-state wavefunction projected into the manifold of excited states by the absorption of a
photon. (a) An autocorrelation function and (b) the absorption spectrum calculated by the Fourier

Transform of the autocorrelation function.
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Figure 2. The absorption spectrum of pyrazine. (a) The experimental spectrum (dashed line) compared
to that calculated using a 24-mode vibronic coupling model Hamiltonian and the MCTDH method with
a large basis set (full line). (b) The calculated absolute value of the pyrazine autocorrelation function
from two 24-mode MCTDH calculations using different basis sizes. Large basis set (full line), small basis
set (dashed line). See Tab. 1 for details.
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Figure 3. Cuts through the PES of allene along normal modes important for the non-adiabatic
dynamics. The potentials show the data from ab initio calculations as points. The lines are the adiabatic
surfaces from the vibronic coupling model Hamiltonian. Taken from [59].
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Figure 4. State populations of Cr(CO)s after formation in the A state by photo-dissociation of
Cr(CO)g. The model included the lowest three electronic states and the most strongly coupled modes.
(a) The diabatic state populations and (b) adiabatic state populations including only 2 modes. (c¢) The
diabatic state populations and (d) adiabatic state populations including 5-modes.
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Figure 5. Snapshots of the adiabatic wavepacket of Cr(CO)s after formation from the photodissociation

of Cr(CO)g. The right-hand panel shows the upper, S1, state and the left-hand panel the lower, So. The

dotted lines are contours representing the adiabatic potential energy surfaces. The full contours represent
the wavepacket density. The coordinates are the strongest coupling doubly degenerate modes.
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Figure 6. A schematic diagram of the lowest eight electronic states in the benzene radical cation shown
as a cut along an effective mode. Conical intersections between the states are circled.
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Figure 7. The population dynamics of the X-B-C system of the benzene radical cation. (a) The
symmetric mode vo along with the degenerate modes vi6, v1g and vi9 (Herzberg numbering) as well as
an effective mode with b2y symmetry were included along with all five electronic states. The populations

of B and X are the sum of the two components. (b) The same calculation, but treating all modes and
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Figure 8. The wavepacket dynamics of the butatriene cation after formation in the diabatic A state. (a)
In the top panel, the contours show the adiabatic PESs of the X and A states in the space of the main
tuning and coupling modes. Lower panels show snapshots of the wavepacket at the times indicated. The
contours are for the full quantum wavepacket the crosses denote the coordinates from 80 Trajectories in a
direct dynamics surface hopping study. Taken from Ref. [81] (b) The wavepacket dynamics on the lower
surface. On the left, the density is from a converged MCTDH calculation. On the right, from a vMCG
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calculation using 32 GWPs (16 in each state). Taken from [87].
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Figure 9. The autocorrelation function from a 4-mode model of the S1 / S2 manifold of pyrazine after
vertical excitation to the Sa state comparing vMCG to classical GWPs. (a) vMCG 40 (dashed), 120
(dotted) and 160 GWPs (bold line) (b) classical GWPs 160 (dotted), 3794 (dashed) and 94320 (bold

IC(H)l

IC (1)l

line) GWPs. Reproduced from Ref. [80].
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Figure 10. The spectrum from a 10-mode model of pyrazine using a converged MCTDH calculation
(bold line) and a small G-MCTDH calculation (dashed line). See text for details.
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