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Abstract

Quantum molecular dynamics describe the time-evolution of a chem-
ical system at the atomic level by directly solving the Schrödinger
equation. Time-dependent methods, exemplified by wavepacket prop-
agation, are by now developed to a point where they provide an impor-
tant insight into the mechanism of many fundamental processes. Of
these methods, the most versatile and efficient is probably the multi-
configuration time-dependent Hartree (MCTDH) method. The form
of the wavefunction used leads to a particularly compact description of
the system, and it is possible to run either qualitative, cheap, or accu-
rate, expensive, calculations within the same framework. MCTDH has
now shown that it is able to treat systems much larger than other wave-
packet propagation methods, and benchmark calculations on systems
with up to 24 degrees of freedom have been made. In contrast, stan-
dard methods can rarely treat more than 4-6 degrees of freedom. In
the following, we review the basic theory of MCTDH. Recent advances
are included, such as the development of the method for treating the
time-evolution of density operators.
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1 Introduction

Quantum molecular dynamics models the time-evolution of a chemical sys-
tem by directly solving the Schrödinger equation, and thus aims to provide
complete information at an atomic level. For many processes computer sim-
ulations using these methods are essential to understand the measurements
made. Typical examples are found in molecular beam and femtochemistry
experiments, where the fundamental steps of chemical change and reactivity
are being probed.

The pictures from classical molecular dynamics simulations are by now
well known to chemists. Particularly in the fields of bio- and organic chem-
istry, these methods have helped to highlight the dynamical nature of mo-
lecular interactions. In these simulations, the nuclei are treated as classical
particles, and the molecule has a definite nuclear configuration at each point
in time. In contrast, the nuclei in quantum molecular dynamics are repre-
sented by a wavefunction. The resulting picture is quite different, and the
system flows across a potential energy surface, spreading out through con-
figuration space in a complicated way including interference effects. Regions
of high density indicate where the system is likely to be. In many simple
situations the two pictures lead to a similar result, but in some cases the
classical picture will be qualitatively incorrect.

Experimental information about molecular dynamics typically comes
from spectra and reaction cross-sections. The former use light to probe
what happens after a process is initiated, while the latter give the prob-
ability of a system moving from one quantum state to another during a
reaction. The early studies typically used a time-independent picture to
characterize the molecular dynamics in terms of the states of the system oc-
cupied. For example, a spectrum can be analyzed in terms of the eigenvalues
of the Hamiltonian, and the calculation of Franck-Condon factors. Time-
independent scattering theory is also able to deliver reaction cross-sections.

Time-dependent approaches to quantum molecular dynamics have in re-
cent times become more popular. They add to the understanding of the
dynamics and are numerically competitive, if not superior. They are par-
ticularly useful for studying scattering or half-scattering (e. g. photodis-
sociation) problems as the complicated scattering boundary conditions do
not appear in the time-dependent picture. Time-dependent approaches are
also very useful for investigating very dense, not fully resolved spectra, e. g.
vibronic spectra of polyatomic molecules when the Born-Oppenheimer po-
tential energy surfaces exhibit a conical intersection. A time-dependent
approach is usually not the first choice for accurately computing individual
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eigen-energies, but with the advent of the filtering method [1–4], the time-
dependent approach became competitive even for this problem. Finally,
a time dependent approach is unavoidable, when the Hamiltonian itself is
time-dependent.

The direct solution of the time-dependent Schrödinger equation leads
to wavepacket propagation methods [5–9]. The system is represented in its
initial state by a wavepacket, a non-stationary superposition of eigenstates.
The time-evolution of this wavepacket is then calculated using powerful nu-
merical methods. Not only can all the required information be extracted
from the evolving wavepacket, but it provides a very pictorial description of
the process of interest. Unfortunately this standard method suffers from its
need of computer resources, which scales exponentially with the number of
degrees of freedom in the system. This typically precludes the treatment of
systems with more than 4 - 6 degrees of freedom, and forces us to search for
approximate methods.

Retaining the conceptual simplicity of wavepacket propagation, but at-
tacking the poor scaling of the standard method leads us to the multiconfigu-
ration time-dependent Hartree (MCTDH) method [10–15]. The power of the
method lies in its flexibility and theoretically solid basis. The wavefunction
is expanded in a set of time-dependent basis functions. Using a variational
principle, equations of motion are obtained for these functions, known as
single-particle functions. The basis thus follows the evolving wavepacket,
which results in a very compact representation. Importantly, the result con-
verges on the exact result as the basis is increased in size. In the other
limit of a single configuration of basis functions is the well-known approx-
imation time-dependent Hartree (TDH), or time-dependent self-consistent
field (TDSCF), method [16, 17]. MCTDH is thus able to span a range of
accuracies.

The method also provides a good starting point for further approxima-
tions. For example, in a recent development, which will not be treated
further in this article, it has been suggested that replacing some of the fully
flexible single-particle functions of the standard MCTDH method by either
Gaussian functions [18] or localized sinc functions [19] may provide a more
efficient, but more approximate, way to treat large molecular systems.

The method has been applied successfully to a number of phenomena
such as direct photodissociation [11, 20–23], photodissociation off a sur-
face [24–27], photo-absorption [13, 28–30], and pre-dissociation [26, 31, 32].
It has been used to calculate photo-electron [33–35] and resonance Raman
spectra [36]. It has also been applied to compute cross-sections of both
reactive scattering [37–41] and inelastic molecule-surface scattering [42–47]
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events. Reactions rates have also been calculated directly using a flux cor-
relation function [48–58]. Other studies include the electron transfer along
a conjugated chain [59], and resonant excitation by electron impact [60]. As
it is a time-dependent method, including a time-dependent Hamiltonian is
a trivial matter. An example of the sort of process that can then be studied
is laser-driven proton transfer [61] Finally, combined with filter diagonaliza-
tion, it has been used to calculate bound-state spectra [62, 63].

In a number of cases the method has been applied to non-adiabatic sys-
tems, i.e. those in which radiationless transitions can occur between elec-
tronic states due to the breakdown of the Born-Oppenheimer approximation.
These are systems in which many degrees of freedom are present, and the
potential energy surfaces are strongly anharmonic. Using the vibronic cou-
pling model Hamiltonian [64], the MCTDH method has been able to perform
high quality calculations on systems with a set of coupled electronic states
and up to 24 degrees of freedom explicitely included [13, 29, 33–35]. In this
way we have been able to examine the validity of the reduced dimensionality
models used by most researchers in this field. To further demonstrate the
applicability of the method to large systems, it should be mentioned that in
a recent study MCTDH has been applied to the spin-boson problem includ-
ing 80 degrees of freedom [65], and to the multi-dimensional Henon-Heiles
model, a standard test problem for semi-classical and other approximate
methods, including up to 32-dimensions [66].

The evolution of a wavefunction describes the evolution of a particular,
well defined initial state. A system at finite temperature, however, is an
incoherent mixture of very many thermally excited states. The density op-
erator formalism allows one to correctly describe such a statistical mixture.
The most important advantage of the density operator formalism, however,
is the possibility to include the effects of an environment on the system dy-
namics, thus allowing the description of open quantum systems and their
non-equilibrium dynamics [67]. The wavefunction formalism is not appropri-
ate for such situations since, even if the system is initially in a pure state, it
soon becomes a statistical mixture due to the influence of the environment.

The numerical treatment of density operators is more difficult than the
treatment of wavefunctions since the dimensionality of the system formally
doubles, squaring the effort for time propagation. The number of systems
that can be investigated by numerically exact methods is thus rather re-
stricted since it is normally not possible to treat more than two or three
degrees of freedom. The MCTDH scheme has recently been extended to
propagate density operators [68–70], and the first applications indicate that
the method will be much more efficient than standard approaches [71].
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In this article we review the theory of the method, including all the lat-
est developments. Details of the basic theory have been the subject of a
recent review [15], and only an overview will be given in Sec. 2. The ap-
plication of the method to density operators is, however, still new. Named
here ρMCTDH to distinguish it from the usual method which applies to
wavefunctions, it will be described in some detail in Sec. 3. Other new de-
velopments include ways of generating an initial wavepacket for a range of
physical processes, and for evaluating the results from a calculation, taking
the special form of the MCTDH wavefunction into account. These will be
discussed in Secs. 4 and 5. Of particular interest is a method of generat-
ing excited state nuclear eigenfunctions using a relaxation (imaginary time
propagation) methods in Sec. 4.2.

2 MCTDH for wavefunctions

2.1 The time-dependent picture and the standard method

Our aim is to solve the time-dependent Schrödinger equation

iΨ̇ = H Ψ (1)

(we use a unit system with h̄ = 1 throughout) by representing the wavefunc-
tion and Hamiltonian with a basis set expansion. The most straightforward
way to solve Eq. (1) is to take a one-dimensional time-independent basis set

{χ
(κ)
j } for each degree of freedom κ and expand wavefunction in the direct

product basis set, i. e.

Ψ(Q1, . . . , Qf , t) =

N1
∑

j1=1

. . .

Nf
∑

jf=1

Cj1...jf
(t)

f
∏

κ=1

χ
(κ)
jκ

(Qκ) , (2)

where f specifies the number of degrees of freedom, Q1, . . . , Qf are the nu-
clear coordinates, Cj1...jf

denote the time-dependent expansion coefficients,
and Nκ denote the number of basis functions used for representing the κ
degree of freedom.

The equations of motion for Cj1...jf
(t) can be derived from the Dirac-

Frenkel variational principle [16, 72]

〈δΨ |H − i
∂

∂t
|Ψ〉 = 0 , (3)

leading to

iĊJ =
∑

L

HJLCL , (4)
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where we have established the multi-index J = j1 . . . jf (and analogously for

L). HJL = 〈χ
(1)
j1

. . . χ
(f)
jf

|H |χ
(1)
l1

. . . χ
(f)
lf

〉 is the matrix representation of the

Hamiltonian given in the product basis set.
To allow an efficient and accurate evaluation of the action of the Hamil-

tonian H on the wavefunction Ψ, one usually replaces the basis functions
by a discrete variable representation (DVR) [15, 73–75]. If one utilizes the
fact that the potential energy is diagonal on a DVR grid and that the ki-
netic energy part of H can be written in tensor form, the computational
effort necessary to evaluate the right hand side of Eq. (4) becomes propor-
tional to fN f+1. Here we have assumed for simplicity that the same number
N = N1 = . . . = Nf of basis functions (or grid points) is employed for each
degree of freedom. Similarly, the memory requirement is 3×N f ×16 Bytes,
as a propagation algorithm requires at least three wavefunctions in central
memory (RAM) and a complex word needs 16 Bytes. This scaling behav-
ior, both for effort and memory, generally restricts the standard method to
systems with not more than five or six degrees of freedom: for example, if
N = 32 and f = 6 this amounts to 48 GB. If large grids are required, even
a 4D calculation can become a difficult task.

2.2 The MCTDH equations of motion

From what is outlined above it is clear that the standard method is not
capable of treating large systems. In the MCTDH scheme [10–15], one
therefore employs an intermediate, smaller, but now time-dependent basis
of so-called single-particle functions (SPFs). The ansatz for the MCTDH-
wavefunction reads

Ψ(Q1, . . . , Qf , t) =

n1
∑

j1=1

. . .

nf
∑

jf=1

Aj1...jf
(t)

f
∏

κ=1

ϕ
(κ)
jκ

(Qκ, t)

=
∑

J

AJ ΦJ (5)

with nκ < Nκ. Here the configuration, or Hartree-product, ΦJ is a f -
dimensional product of SPFs, implicitly defined by Eq. (5). The AJ ≡

Aj1...jf
denote the MCTDH expansion coefficients and the ϕ

(κ)
jκ

are the SPFs,
which in turn are represented as linear combinations of the primitive basis

ϕ
(κ)
jκ

(Qκ, t) =

Nκ
∑

iκ=1

c
(κ)
iκ jκ

(t) χ
(κ)
iκ

(Qκ) . (6)
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Since both the coefficients and the SPFs are time-dependent, the wave-
function representation (5) is not unique. Uniquely defined equations of
motion can be obtained by imposing additional constraints on the SPFs
[11, 12, 14, 15]. Hereby it can be achieved that initially orthonormal SPFs
remain orthonormal for all times. The constraints read

〈ϕ
(κ)
j (0)|ϕ

(κ)
l (0)〉 = δjl (7)

〈ϕ
(κ)
j (t)|ϕ̇

(κ)
l (t)〉 = −i〈ϕ

(κ)
j (t)|g(κ)|ϕ

(κ)
l (t)〉 , (8)

were g(κ) denotes a constraint operator. The constraint operators are hermi-
tian but otherwise arbitrary and should be chosen such that the equations
of motion are easy to integrate.

In order to write down the equations of motion for the SPFs and coeffi-
cients in a concise way, it is necessary to introduce the single-hole functions

Ψ
(κ)
l = 〈ϕ

(κ)
l |Ψ〉 =

∑

J

κ
AJκ

l

∏

κ′ 6=κ

ϕ
(κ′)
jκ′

, (9)

where Jκ
l denotes a composite index J with the κth entry set at l, and

∑κ
J

is the sum over the indices for all degrees of freedom excluding the κth. The
single-hole functions allow us to write the total wavefunction as

Ψ =
∑

l

ϕ
(κ)
l Ψ

(κ)
l (10)

for any degree of freedom κ. This expansion is used when deriving the
equations of motion for the SPFs.

Next we define the mean field

〈H〉
(κ)
jl = 〈Ψ

(κ)
j |H |Ψ

(κ)
l 〉 (11)

and density matrices

ρ
(κ)
jl = 〈Ψ

(κ)
j |Ψ

(κ)
l 〉 =

∑

J

κ
A∗

Jκ
j
AJκ

l
. (12)

Note that the mean-field matrix elements are operators on the κth degree
of freedom. Finally, we define the MCTDH projector

P (κ) =

nκ
∑

j=1

|ϕ
(κ)
j 〉〈ϕ

(κ)
j | , (13)
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and split the Hamiltonian into correlated and separable terms

H =

f
∑

κ=1

h(κ) + HR , (14)

where h(κ) acts only on the κ th degree of freedom and residual part, HR,
includes all the correlations between the degrees of freedom.

The MCTDH equations of motion are derived by applying the Dirac-
Frenkel variational principle, Eq. (3), to the ansatz Eq. (5). After some
algebra one obtains [11, 12, 15]

iȦJ =
∑

L

〈ΦJ |HR |ΦL〉AL +

f
∑

κ=1

nκ
∑

l=1

(h
(κ)
jκl − g

(κ)
jκl )AJκ

l
, (15)

iϕ̇ϕϕ(κ) = g(κ)1nκϕϕϕ
(κ) +

(

1 − P (κ)
)

×
[

(

ρρρ(κ)
)−1

〈HR〉
(κ) + (h(κ) − g(κ))1nκ

]

ϕϕϕ(κ) , (16)

where a vector notation has been adopted for the SPFs with

ϕϕϕ(κ) =
(

ϕ
(κ)
1 , . . . , ϕ(κ)

nκ

)T
, (17)

and where 1nκ denotes the nκ×nκ unit matrix. h
(κ)
jl and g

(κ)
jl are the matrix

elements of h(κ) and g(κ) with respect to the SPFs.
There are two obvious choices for the constraint operators g(κ), namely

g(κ) = 0 and g(κ) = h(κ). The latter choice yields

iȦJ =
∑

L

〈ΦJ |HR |ΦL〉AL , (18)

iϕ̇ϕϕ(κ) =

[

h(κ)1nκ +
(

1 − P (κ)
) (

ρρρ(κ)
)−1

〈HR〉
(κ)

]

ϕϕϕ(κ) , (19)

whereas the first choice yields

iȦJ =
∑

L

〈ΦJ |HR |ΦL〉AL +

f
∑

κ=1

nκ
∑

l=1

h
(κ)
jκl AJκ

l
, (20)

iϕ̇ϕϕ(κ) =
(

1 − P (κ)
)

[

h(κ)1nκ +
(

ρρρ(κ)
)−1

〈HR〉
(κ)

]

ϕϕϕ(κ) . (21)
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Finally, dropping the partitioning of the Hamiltonian, Eq. (14), and setting
HR = H, one may write the equations of motion for the choice g(κ) = 0
rather compactly as

iȦJ =
∑

L

〈ΦJ |H |ΦL〉AL , (22)

iϕ̇ϕϕ(κ) =
(

1 − P (κ)
)(

ρρρ(κ)
)−1

〈H〉(κ)ϕϕϕ(κ) . (23)

Comparing Eq. (19) with (21) one notices that the two different choices
for the constraints let the MCTDH projector appear at different positions.
The MCTDH projector ensures that the part of the propagation of the total
wavefunction, which is accomplished by the coefficients, is not re–done when
propagating the SPFs.

It is important to understand that the choice of the constraints does not
change the quality of the MCTDH expansion Eq. (5). The different wave-
functions obtained by propagating with different constraints are connected
by unitary transformations among the SPFs and reverse transformations on
the A–coefficients [15]. Other choices of the constraints, besides the two
discussed, may be used for special purposes [15].

The MCTDH equations conserve the norm and, for time-independent
Hamiltonians, the total energy. This follows directly from the variational
principle [15]. MCTDH contains Time-Dependent Hartree (TDH) and the
standard method as limiting cases. MCTDH simplifies to TDH when setting
all nκ = 1. Increasing the nκ recovers more and more correlation, until
finally, for nκ = Nκ, the standard method is used.

2.3 Density matrices, natural orbitals, and natural popula-
tions

Let us define the reduced one-particle density operator in the usual manner
as

ρ̂(κ) = Tr{ |Ψ〉〈Ψ | }κ , (24)

where Tr{ · }κ denotes the (partial) trace over all but the κ-th degree of
freedom. The MCTDH density matrix is related to this operator through

ρ
(κ)
jl = 〈ϕ

(κ)
l | ρ̂(κ) |ϕ

(κ)
j 〉 . (25)

Note that the indices are interchanged. The MCTDH density matrix is thus
the transpose of the usual reduced one-particle density matrix.
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Diagonalising the operator ρ̂(κ) yields the natural populations and nat-

ural orbitals [10, 11, 76, 77], defined as the eigenvalues and eigenvectors of
ρ̂(κ). The natural orbitals are, of course, linear combinations of the SPFs.
The natural populations characterize the contribution of the related natural
orbitals to the representation of the wavefunction. Small natural popula-
tions indicate that the MCTDH expansion converges, and this provides an
important internal check on the quality of the computed solution. (See e. g.
Refs. [11, 20, 22, 27, 31, 37, 42, 43, 76] for examples). For vanishing eigenval-
ues, the hermitian and positive semi-definite density matrix will become
singular. How to solve the resulting numerical problem is discussed e. g. in
Refs. [11, 15].

2.4 Non-adiabatic systems, electronic states

The motion of the molecular nuclei may not evolve on a single Born-Oppen-
heimer potential energy surface, and a multi-state formulation may be nec-
essary. In such an instance one often assumes a diabatic representation, but
this is only for numerical convenience and not necessary in principle. The
MCTDH algorithm can be applied straightforwardly to systems where more
than one electronic state is included. One simply chooses one extra degree
of freedom, the κeth say, to represent the electronic manifold [21, 78]. The
coordinate Qκe then labels the electronic states, taking only discrete values
Qκe = 1, 2, . . . , σ, where σ is the number of electronic states under consider-
ation. The number of single-particle functions for such an electronic mode
is set to the number of states, i.e. nκe = σ. The equations of motion (15 –
23) remain unchanged, treating nuclear and electronic modes on the same
footing. This is called the single-set formulation, since only one set of SPFs
is used for all the electronic states.

Because the motion on the included electronic potential energy surfaces
can be vastly different, one may think of more efficient ways to include elec-
tronic states. The so-called multi-set formulation employs different sets of
SPFs for each electronic state [24,28]. In this formulation the wavefunction
Ψ and the Hamiltonian H are expanded in the set {|α〉} of electronic states:

|Ψ〉 =

σ
∑

α=1

Ψ(α) |α〉 (26)

and

H =
σ

∑

α,β=1

|α〉H(αβ)〈β | , (27)
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where each state function Ψ(α) is expanded in MCTDH form (5). The
derivation of the equations of motion corresponds to the single-set formalism,
except that extra state labels have to be introduced on the various quantities
such as constraint operators, mean fields and density matrices. For details
see Refs. [15, 24, 28]. The computational effort of the single- and multi-set
approach is analyzed and compared in Ref. [12].

2.5 Mode combination and numerical scaling

As discussed in Sec. 2.1 the standard method requires the storage of (at
least) 3×N f complex words. The storage of a single MCTDH wavefunction
requires

memory ∼ fnN + nf (28)

complex words, where – for the sake of simplicity – we have again assumed
that each degree of freedom requires n SPFs and N grid-points to converge
the wavefunction. The first part in the sum, fnN , accounts for the space
needed to store the SPFs and the second part, nf , accounts for the storage
of the coefficient vector. To store the wavefunction, its derivative, and all
the mean-fields etc, it was found that MCTDH requires a storage which
approximately equals that of 12 MCTDH wavefunctions. An example will
be illustrative. Let us assume that there are 12 degrees of freedom, and that
6 SPFs and 32 grid-points are needed for each degree of freedom to ensure
convergence. Hence f = 12, n = 6, N = 32. The standard method would
require 5×1010 GB, demonstrating that this method is totally inappropriate.
MCTDH, on the other hand, would require 390GB, which is 8 orders of
magnitude smaller, but still much too big to fit on todays workstations. If
one analyzes the wavefunction storage, one finds that the SPFs take only
fnN = 2304 words, whereas storage of the coefficient vector requires nf =
2.2×109 words. It is thus the exponential growth of the A-vector, which
eventually lets MCTDH become infeasible for sufficiently large numbers of
degrees of freedom. Fortunately, there is a (partial) solution to this problem:
mode combination.

The memory requirement of the A-vector can be reduced substantially if
single-particle functions are used that describe a set of degrees of freedom,
rather than just one. The wavefunction ansatz, Eq. (5), is then rewritten as
a multi-configuration over p generalized “particles”,

Ψ(q1, . . . , qp, t) =

ñ1
∑

j1=1

. . .

ñp
∑

jp=1

Aj1...jp(t)

p
∏

κ̃=1

ϕ
(κ̃)
jκ̃

(qκ̃, t) , (29)
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where qκ̃ = (Qκ1
, Qκ2

, . . . , Qκd
) is the set of coordinates combined together

in a single particle, described by ñκ̃ SPFs. Upon combination the primitive
grid increases: Ñκ̃ = Nκ1

× Nκ2
× . . . × Nκd

. The length of the A–vector,
however, shrinks, because ñ will be smaller than the product of the associ-
ated n. This is because the correlation among the combined modes is now
already taken care of on the single-particle level. We have found that, as a
rule of thumb, one usually need to set ñ to the sum of the associated n to
ensure convergence.

To investigate the memory requirement for combined modes, we assume
that always d degrees of freedom are combined. There are hence p = f/d
particles, the grid-size increases to Ñ = Nd, and the number of combined
SPFs increases to ñ = dn. The memory requirement changes to

memory ∼ pñÑ + ñp

≈ fnNd + nf/d . (30)

To illustrate this equation, we return to the example discussed above. With
d = 2 follows p = 6, Ñ = 1024, and ñ = 12. The memory requirement for
the SPFs increases from 2304 to 73728 words, but the space needed to store
one A–vector decreases from 2.2×109 to 3×106 words. The total mem-
ory required decreases dramatically from 390GB to 560MB. The first step,
standard method to MCTDH, saved us 8 orders of magnitude in memory
requirement (RAM), the second step, MCTDH to MCTDH with combined
modes, brought us another three orders. Like the standard wavepacket
method, MCTDH is plagued with exponential scaling, i. e. its memory re-
quirement grows as bf with the number of degrees of freedom f . The base
b, however, is much smaller in MCTDH, making MCTDH suitable to attack
larger problems [13, 29, 33–35, 65, 66]. For the three methods discussed, the
base b equals N , n, and ñ ≈ (dn)(1/d) (or 32, 6, and 3.46 in the example),
respectively. In one particular case [13] the base was as small as b = 1.83.

In a practical situation one is confronted with the question of which
modes to combine into a particle. If there are modes which are more strongly
coupled to each other than to the rest of the modes, one should combine
these strongly coupled modes. As the correlation among these modes is
now treated on the single-particle level, rather low numbers ñκ̃ of multi–
mode SPFs suffice for convergence and ñ may become considerably smaller
than dn. Often, however, it is difficult to decide a priory which modes are
strongly coupled to each other. In this case one may take a pragmatic view,
based on memory considerations, and follow the rules: 1) Combine modes
such, that the sizes of the combined grids are roughly equal to each other.
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2) The space taken by the SPFs should be similar to but not larger than
the space consumed by the A–vector.

2.6 Product representation of the potential

The solution of the MCTDH equations of motion requires the evaluation of
the Hamiltonian matrix 〈ΦJ |HR |ΦL〉 and the mean fields 〈HR〉 at each time
step of the integration. These are formally f and f -1 dimensional integrals.
Doing the integrals by multi-dimensional quadrature over the primitive grid
would slow down MCTDH such that it would not be competitive.

The multi-dimensional integrations can be circumvented if the Hamilto-
nian is written as a sum of products of single-particle operators,

H =
s

∑

r=1

cr

f
∏

κ=1

h(κ)
r , (31)

with expansion coefficients cr. Using Eq. (31) the matrix elements can be
expanded as

〈ΦJ |H |ΦL〉 =

s
∑

r=1

cr

f
∏

κ=1

〈ϕ
(κ)
jκ

|h(κ)
r |ϕ

(κ)
lκ

〉 , (32)

and similarly for the mean fields (see Ref. [11, 15]). Note that only one-
dimensional integrals are now required. (With mode-combination, d–dimen-
sional integrals may appear).

The kinetic energy operator normally has the required form (31). Often,
however, the potential energy operator does not have the necessary struc-
ture, and it must be fitted to the product form. A convenient, systematic,
and efficient approach to obtain an optimal product representation is de-
scribed in Refs. [15, 79, 80]. Note that it is important to keep the number
of expansion terms, s, as small as possible, because the computation time
increases linearly with s.

The expansion of the potential in a product form can be avoided by
adopting the correlated DVR (CDVR) of U. Manthe [81]. This uses a time-
dependent DVR based on the SPFs to evaluate the multi-dimensional inte-
grals without recourse to the full primitive grid. The method however suffers
in that it has no internal error control (see Ref. [15] for a discussion). We
hope that CDVR can be developed to overcome this problem, as it represents
a very important step in increasing the generality of the method.
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2.7 The constant mean-field (CMF) integrator

The MCTDH equations of motion, Eqs. (15, 16), are strongly coupled and
non-linear. As a result they cannot be solved using the powerful integration
schemes developed for linear equations, such as those used in the standard
method [82]. A significant step forward in the application of the MCTDH
method was made in the development of the constant mean-field (CMF)
integrator.

The motivation behind the CMF integration scheme is that the matrix
elements 〈ΦJ | H | ΦL〉 and the product of the inverse density with the
mean-field matrices generally change much slower in time than the MCTDH
coefficients and the SPFs. For that reason it is possible to use a wider
meshed time discretization for the propagation of the former quantities than
for the latter ones with only a minor loss of accuracy. In other words,
during the integration of the equations of motion (22) and (23) one may
hold the Hamiltonian matrix elements, the density matrices, and the mean-
field matrices constant for some time τ (hence the name).

Doing so, the the large set of coupled equations of motions (22,23) is
split into f + 1 smaller sets which are uncoupled from each other over the
time–step τ . The first set of equations is similar to (22), but, as the matrix
elements are now constant, it turns into a linear differential equation. The
other f sets of equations are similar to (23), but, as the inverse density
and the mean-field matrices are now constant, the differential equations for
the different degrees of freedom, κ, decouple from each other (and from
the equation for the coefficients). Because of this decoupling one may use
different step–sizes and even different integration routines for each set of
equations. For the – now linear – set of equations for the coefficients a short
iterative Lanczos (SIL) integrator [83] is usually used. For the – still non-
linear – sets of equations for the SPFs we usually adopt a Bulirsch-Stoer or
Runge-Kutta integrator.

In order to be efficient, the CMF-integrator algorithm has to be more
complicated than outlined above. A predictor–corrector approach is used,
which removes errors linear in τ and provides an automatic step–size control
for the CMF–step τ . With these modifications [12, 15] the CMF–integrator
has become an important ingredient to MCTDH. The use of the CMF–
integrator speeds up the calculation by typically one order of magnitude.
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2.8 Selected configurations (S-MCTDH)

The discussion on scaling in Sec. 2.5 shows that MCTDH has unfortunately
not broken the exponential scaling of the standard wavepacket propagation
method. Its success is achieved by using the SPFs to lower the base of the
exponent, and by using multi-mode functions to change the effective dimen-
sionality of a problem. In this and the next section, we look at two possible
ways to fight the exponential scaling and to make MCTDH applicable to
even larger systems.

The exponential scaling is simply due to the use of a direct product
basis - configurations using all possible combinations of the basis functions
are included. In an analogy to electronic structure calculations MCTDH can
be called a full-configuration interaction (CI) method. For large systems,
many millions of configurations may be generated that are negligible in
importance for the description of the wavefunction, covering regions of space
not occupied by the system. The S-MCTDH method aims to select and
propagate only the important configurations [84].

To select a set of configurations from the full-CI set, the configuration
space {J}, represented by the indices attached to the coefficients, AJ , is
divided into two spaces {D} and {R}, where the former are for the configu-
rations to be included in, and the latter for those to be excluded from, the
calculation. Assuming that AJ(t0) = 0 for J ∈ {R}, we thus require that

iȦJ = 0; for J ∈ {R} . (33)

To meet these conditions, the operator H −
∑

κ g(κ) in Eq. (15) is re-
placed by its projection onto the space of the included configurations, {D}.
Defining the time-dependent projector,

D̂ =
∑

J∈{D}

| ΦJ〉〈ΦJ | , (34)

the time-derivative of the expansion coefficients is then

iȦJ =
∑

L

〈ΦJ |D̂(H −

p
∑

κ=1

g(κ))D̂ |ΦL〉AL . (35)

This equation is obviously zero for J ∈ {R}.
The S-MCTDH method is based on this change in the time-derivatives

of the wavefunction expansion coefficients. The time-derivatives of the SPFs
retain the form of the full-CI solution, Eq. (16), and these functions evolve
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in the mean-fields and density matrices formed from the wavefunction con-
strained to lie in the included configuration space. It can be shown that the
system is now being propagated by the effective Hamiltonian

Heff = H − G , (36)

where using the projector onto the excluded space, R̂,

G = R̂ (H −

p
∑

κ=1

g(κ)) . (37)

This equation defines the space of redundant configurations. It is simply
the space orthogonal to the result of the operation of H −

∑

κ g(κ) on the
wavefunction.

How should the constraint operator, g(κ), be chosen? In the usual MC-
TDH method, it plays only a minor role: as mentioned in Sec. 2.2 different
representations of the SPFs are connected by unitary transformations and
different choices affect only the numerics. In S-MCTDH the representation
chosen is crucial. Different g(κ) will result both in a different operator and
a different excluded space. This will thus change the convergence, i.e. the
number of redundant configurations that can be excluded from the calcula-
tion.

In Ref. [84] a natural orbital representation was used, in which the SPFs
evolve so that the density matrices remain diagonal (see Sec. 2.3). As
a result, an importance can be attached to each function, and products
of unimportant functions can be ignored. In the 24-dimensional example
studied, the largest MCTDH calculation made used 2,771,440 configurations.
The spectrum obtained from an S-MCTDH calculation choosing just the
13,023 most important configurations was virtually indistinguishable. The
problems in the method, however, are the extra book-keeping required to
keep track of the indices, and improvements in the present algorithm are
required to enable the full power of this approach to be used.

2.9 Cascading

The cascading approach is similar in spirit to S-MCTDH, discussed in the
last section. In essence, cascading selects linear combinations of configura-
tions rather than configurations itself. As cascading is fully based on an
variational principle, it is expected to be more efficient than S-MCTDH.
However, cascading is a much more complicated algorithm and has not been
implemented yet.

17



One important step in going to large systems was the introduction of
mode combination (see section 2.5). This, however, quickly reaches a limit
because multi–dimensional SPFs have to be propagated. To go further, we
thus need a method able to efficiently propagate multi-dimensional wavepack-
ets. Of course we have such a method: MCTDH. The idea is thus to use
MCTDH to propagate highly combined SPFs of the original MCTDH ex-
pansion. One may continue and use again MCTDH to propagate the (second
layer) SPFs used to expand the original (first layer) SPFs, and so on. In this
way one cascades down until one arrives at SPFs the dimension of which
is small enough to be propagated conventionally. (The notation first layer

and second layer was suggested by H. Wang).
Alternatively one may imagine performing a (standard) MCTDH calcu-

lation on a large system. This leads to an enormously long A–vector, which
cannot be propagated conventionally. However, one may propagate it with
MCTDH and, similar to above, cascades down until a a manageable size is
reached. Fortunately, both approaches yield exactly the same set of working
equations.

In the following we will discuss one–step cascading, which is expected
to be the most important approximation out of the cascading family. It is
fairly obvious how the working equations have to be generalized to cover
two–step or three–step cascading.

We assume that the wavefunction is expanded in MCTDH form Eq. (5),
and – for sake of simplicity – we will assume the constraint g(κ) = 0 and
discard the partitioning of the Hamiltonian, Eq. (14). The equations of
motions hence are given by Eqs. (22,23). We split the composite index J
into pieces

J = (J1, · · · , Jp)

Jβ = (jαβ−1+1, · · · , jαβ
) (38)

where β = 1, · · · , p and where p denotes the number of particles, or first-
layer degrees of freedom. The numbers α define which degrees of freedom
go into one particle. Note, α0 = 0 and αp = f by definition. With this
nomenclature we write the A–vector as

AJ =

m1
∑

k1

· · ·

mp
∑

kp

Bk1···kp
C

(1)
k1J1

· · ·C
(p)
kpJp

, (39)

define the partial configurations

ΦJβ
=

αβ
∏

κ=αβ−1+1

ϕ
(κ)
jκ

, (40)
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and the first-layer SPFs

θ
(β)
k =

∑

Jβ

C
(β)
kJβ

ΦJβ
. (41)

The total wavefunction expanded in second layer SPFs is given by Eqs.
(5,39), but expanded in first layer SPFs it reads

Ψ =

m1
∑

k1=1

. . .

mp
∑

kf=1

Bk1...kp
(t)

p
∏

β=1

θ
(β)
kβ

=
∑

K

BK ΘK , (42)

which implicitly defines the composite index K and the first-layer configu-
ration ΘK .

We proceed by introducing the first layer single-hole functions

Ψ̃
(β)
k = 〈θ

(β)
k |Ψ〉 , (43)

where a more explicit equation can be easily derived (compare with Eq. (9)).

The definition of the second layer single-hole functions, Ψ
(κ)
j , is still given

by Eq. (9). The first layer single-hole functions allow us to define first layer
density matrices and mean-fields

ρ̃
(β)
kk′ = 〈Ψ̃

(β)
k |Ψ̃

(β)
k′ 〉 =

∑

K

β
B∗

Kβ
k

B
Kβ

k′
, (44)

and
〈H̃〉

(β)
kJβk′J ′

β

= 〈Ψ̃
(β)
k ΦJβ

|H |Ψ̃
(β)
k′ ΦJ ′

β
〉 , (45)

and the first layer MCTDH projector

P̃
(β)
JβJ ′

β

=

mβ
∑

k=1

C
(β)
kJβ

C
(β)∗
kJ ′

β

. (46)

The second layer mean–field, density matrix, and projector are the “orig-
inal” ones, i. e. they are given by Eqs. (11,12,13). Note that the second layer
mean–field, Eq. (11), is an operator, whereas the first layer mean–field, Eq.
(45), is a number.

Using again the Dirac-Frenkel variational principle, Eq. (3), one arrives
after some algebra at the one–step cascading equations of motion

iḂK =
∑

K′

〈ΘK |H |ΘK′〉BK′ , (47)
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iĊ
(β)
kJβ

=
∑

J ′
β
J ′′

β
k′k′′

(

δJ ′
β
J ′′

β
− P̃

(β)
J ′

β
J ′′

β

) (

ρ̃ρρ(β)−1
)

kk′
〈H̃〉

(β)
k′J ′

β
k′′J ′′

β

C
(β)
k′′J ′′

β

, (48)

iϕ̇
(κ)
j =

∑

lm

(

1 − P (κ)
) (

ρρρ(κ)−1
)

jl
〈H〉

(κ)
lm ϕ(κ)

m . (49)

Note that the equation of motion for the second layer SPFs, Eq. (49), is
precisely the “old” equation of motion (23). The equation of motion for
the first layer SPFs is implicitly given by Eq. (48), i. e. by the equation of
motion for their expansion coefficients. Note the evident formal similarity
between Eqs. (49) and (48). In fact, Eq. (49) becomes very similar to Eq.

(48) when writing it for the primitive basis expansion coefficients c
(κ)
iκ jκ

(t)

(cf. Eq. (6)) rather than for the SPF ϕ
(κ)
j itself. Finally, the equation of

motion for the B coefficients is structurally very similar to Eq. (22).
Let us discuss an example to demonstrate the potential of one–step cas-

cading. Assume that there are f = 25 degrees of freedom, and that n = 10
SPFs are required for each degree of freedom. In a conventional MCTDH
approach there would be 1025 coefficients, requiring 1.5 × 1020 GB. Such a
calculation is, of course, impossible. Using one–step cascading and combin-
ing 5 degrees of freedom into one particle such that there are p = 5 particles
and assuming that m = 25 first layer SPFs per particle are sufficient for
convergence, one finds that the B and C coefficients require 149 MB and
191 MB, respectively. The space required for the second layer SPFs is rather
small. Even if a huge primitive grid of 10,000 points is used, only 39 MB are
needed. Thus one total wavefunction takes less than 380 MB and the whole
calculation is expected to consume less than 8 GB, feasible on a modern
work station. The second layer SPFs may (and in fact should) already make
use of mode combination. As a huge primitive grid of 10,000 points was
assumed, we may presume that such a grid carries (on the average) four–
dimensional SPFs. Hence a calculation with 100 degrees of freedom seems
to be possible with one–step cascading.

3 ρMCTDH for density operators

3.1 Wavefunctions and density operators

The evolution of a wavefunction describes the evolution of a particular, well
defined initial state. A system at finite temperature, however, is an in-
coherent mixture of very many thermally excited states, |Ψn〉. A correct
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description of such a statistical mixture can be made using the density op-
erator

ρ =
∑

n

pn |Ψn〉〈Ψn| , (50)

where 0 ≤ pn ≤ 1 are the occupation probabilities which add up to 1. (The
density operator ρ should not be confused with the MCTDH one-particle
reduced density, for which – in order to be consistent with the literature
– we have used the same symbol). The most important advantage of the
density operator formalism, however, is the possibility to include the effects
of an environment on the system dynamics, thus allowing the description
of open quantum systems and their non-equilibrium dynamics [67]. The
wavefunction formalism is not appropriate for such situations since, even if
the system is initially in a pure state (i. e. ρ =|Ψ〉〈Ψ|), it soon becomes a
statistical mixture due to the influence of the environment.

The time–evolution of a density operator is given by a differential equa-
tion of first order

iρ̇ = L(ρ) (51)

where L is a linear super-operator. For closed systems the latter reads
(Liouville–von Neumann equation)

L(ρ) = [H, ρ] (52)

where H is the Hamiltonian of the system. This equation is equivalent to
the Schrödinger equation for wavefunctions, and leads to a unitary evolution
of ρ. For open systems a number of approaches for defining L exist, in
particular those that account for the interaction with the environment within
the Markov approximation [85,86]. One of the prominent approaches in this
context refers to the Lindblad form [87–89],

L(ρ) = [H, ρ] + i
∑

j

(

VjρV †
j −

1

2
V †

j Vjρ −
1

2
ρV †

j Vj

)

(53)

which implies that the time evolution is completely positive. Other well-
known expressions are due to Redfield [90] and Caldeira and Leggett [91]
who proposed a perturbative treatment of the interaction and a bath at high
temperature.

In this section we develop the ρMCTDH method, which is an extension
of the MCTDH method to the propagation of density operators. A density
operator is not uniquely defined by a ρMCTDH ansatz, and two different
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approaches have been investigated. In the first, known as type I, single-
particle density operators are used to replace the single-particle functions
of the wavepacket version. In the type II variant, the single-particle density
operators are themselves represented by a product of single-particle func-
tions. The ansatz used will be denoted in brackets, e.g. ρMCTDH(I) for the
method using the type I basis.

3.2 Type I density operators

We generalize the MCTDH ansatz Eq. (5) to density operators

ρ(Q1, . . . , Qf , Q′
1, . . . , Q

′
f , t) =

n1
∑

τ1=1

. . .

nf
∑

τf =1

Bτ1...τf
(t)

f
∏

κ=1

σ(κ)
τκ

(Qκ, Q′
κ, t)

(54)
where the Bτ1...τf

denote the ρMCTDH expansion coefficients, which are now
called B rather than A to avoid confusion with the wavefunction formalism.
The σ

(κ)
τκ are so-called single-particle density operators (SPDOs), analogous

to the SPFs in the wavefunction scheme (see Section 2.2). A density operator
has to be hermitian. To ensure this property we require that the coefficients
are real and the SPDOs are hermitian

Bτ1...τf
= B∗

τ1...τf
, σ(κ)

τκ
= σ(κ) †

τκ
. (55)

As shown in Ref. [70], the ρMCTDH(I) equations of motion conserve these
properties.

To derive the equations of motion one needs a Hilbert space structure
and in particular a scalar product. For this purpose we employ the Hilbert-
Schmidt scalar product [92],

〈〈A |B〉〉 = Tr{A†B} . (56)

Using this scalar product, one may transfer all properties that usually apply
for wavefunctions, such as orthonormality etc., to density operators. In
the following operators and super-operators appear, and it is important to
distinguish between them. For example, the operator [H, ρ] is obviously
anti-hermitian, but the super-operator L = [H, ·] is hermitian [69, 92]!

As in MCTDH for wavefunctions, the representation of the density op-
erator (54) is not unique and constraints are needed to ensure unique, sin-
gularity free equations of motion. The constraints, which imply that the
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SPDOs remain orthonormal, read

〈〈

σ(κ)
µ (0)

∣

∣

∣
σ(κ)

ν (0)
〉〉

= δµν (57)
〈〈

σ(κ)
µ (t)

∣

∣

∣
σ̇(κ)

ν (t)
〉〉

= −i
〈〈

σ(κ)
µ (t)

∣

∣

∣
G(κ) σ(κ)

ν (t)
〉〉

. (58)

Here the constraint super-operator G(κ) is a self-adjoint, but otherwise arbi-
trary, super-operator acting exclusively on the κ-th degree of freedom. In
particular one may set G(κ) = 0. For further reference we introduce the total
constraint super-operator

G =

f
∑

κ=1

G(κ) (59)

which is just the sum of the individual constraint super operators.
The derivation of the equations of motion is very similar to the wave-

function case. We need to define single-hole density operators

Π(κ)
ν = 〈〈σ(κ)

ν |ρ〉〉 =
∑

T

κ
BT κ

ν

∏

κ′ 6=κ

σ(κ′)
τκ′

, (60)

with which we define reduced density matrices (now called D, as ρ is already
used)

D(κ)
µν =

〈〈

Π(κ)
µ

∣

∣

∣
Π(κ)

ν

〉〉

= 〈〈σν | Tr{ ρ†ρ}κ | σµ〉〉

=
∑

T

κ
B∗

T κ
µ

BT κ
ν

, (61)

and mean-field Liouvillian super-operators

〈L − G〉(κ)
µν =

〈〈

Π(κ)
µ

∣

∣

∣
(L− G)Π(κ)

ν

〉〉

. (62)

Finally, we define the ρMCTDH(I) projector

P(κ) =
nκ
∑

ν=1

∣

∣

∣
σ(κ)

ν

〉〉〈〈

σ(κ)
ν

∣

∣

∣
, (63)

and the Hartree product

ΩT =

f
∏

κ=1

σ(κ)
τκ

. (64)
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(These equations should be compared with Eqs. (9-13) and (24,25), where
the nomenclature is explained.)

With the above definitions we can formulate the equations of motion

iḂT =
∑

T ′

〈〈ΩT | (L− G)ΩT ′〉〉BT ′ (65)

iσ̇σσ(κ) = G(κ)σσσ(κ) +
(

1 −P(κ)
)(

DDD(κ)
)−1

〈LLL −GGG 〉(κ) σσσ(κ) . (66)

Note the obvious similarity of these equations of motion with the Eqs.
(15,16), in particular when HR is set to H and the h(κ) vanish. The sep-
aration, Eq. (14), is useful for density propagation as well, but for sake of
simplicity we will not further discuss it here.

3.3 Type II density operators

The SPDOs can also be written as ket–bra products of wavefunctions. Doing
so, the algorithm for density operators becomes even more similar to the
one for wavefunctions. One interprets the index τκ as composite index τκ =
(jκ, lκ), and similarly T = (J, L). Setting

σ(κ)
τκ

(Qκ, Q′
κ, t) =

∣

∣

∣
ϕ

(κ)
jκ

(Qκ, t)
〉 〈

ϕ
(κ)
lκ

(Q′
κ, t)

∣

∣

∣
(67)

and
Bτ1...τf

= Bj1...jf ,l1...lf = B∗
l1...lf ,j1...jf

, (68)

one arrives at the type II density operator expansion

ρ(Q1, . . . , Qf , Q′
1, . . . , Q

′
f , t) =

n1
∑

j1,l1=1

. . .

nf
∑

jf ,lf=1

Bj1...jf ,l1...lf (t)

f
∏

κ=1

∣

∣

∣
ϕ

(κ)
jκ

(Qκ, t)
〉〈

ϕ
(κ)
lκ

(Q′
κ, t)

∣

∣

∣
. (69)

The hermiticity of B, Eq. (68), ensures that ρ is hermitian. The hermiticity
is conserved during the propagation [70].

The constraints (58) must be translated into constraints for the SPFs,
which requires the constraint super-operator to be given as

G(κ) = [g(κ), · ] , (70)

where the constraint operators are similar to those of Eq. (8). In fact, using
Eq. (70) one arrives at Eqs. (7,8), i. e. at the constraint equations for SPFs.
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The ρMCTDH(II) equations of motion for propagating type II density
operators now read [69, 70]

iḂJ,L = 〈ΦJ | (L− G)(ρ) |ΦL〉 , (71)

and

iϕ̇ϕϕ(κ) = g(κ)ϕϕϕ(κ) +
(

1 − P (κ)
)

Tr{(L − G)(ρ)ρ}κ

(

DDD(2),(κ)
)−1

ϕϕϕ(κ) , (72)

where the reduced single-particle density matrix is given by

D
(2),(κ)
jl =

〈

ϕ
(κ)
l

∣

∣

∣
Tr

{

ρ2
}

κ

∣

∣

∣
ϕ

(κ)
j

〉

=
∑

L

∑

J

κ
B∗

L,Jκ
l

BL,Jκ
j

. (73)

It is illustrative to exemplify these equations for the simplest case, L =
[H, · ] and G = 0. The equations of motion can then be written as

iḂJ,L =
∑

K

〈ΦJ |H | ΦK〉BK,L − BJ,K 〈ΦK | H | ΦL〉 , (74)

and

iϕ̇(κ)
m =

(

1 − P (κ)
)

∑

J,L,K

(

DDD(2),(κ)
)−1

mk
BJ,L BL,K

×〈ΦKκ |H | ΦJκ〉 |ϕ
(κ)
j 〉 , (75)

where ΦJκ denotes a Hartree product in which the SPF of the κ’s degree of
freedom is missing. The indices j and k are the κ th entry of the composite
indices J and K, respectively. When deriving Eq. (75) we have discarded
the contribution of the term Tr{ρHρ}κ because it will be annihilated by the
projector (1 − P (κ)). Only the term Tr{Hρ2}κ is kept.

When the density is a pure state, ρ = |Ψ〉〈Ψ|, the coefficient matrix fac-
torizes, BJ,L = AJA∗

L, where A denotes the MCTDH coefficient vector of
Ψ. Inserting this separation into Eqs. (73,74,75) one recovers the MCTDH
wavefunction equations of motion (22,23). Hence, the closed system propa-
gation of a pure-state density operator using ρMCTDH(II) is equivalent to
an MCTDH wavefunction propagation (i.e. identical SPFs, B coefficients of
ρ factorize into A coefficients of Ψ).

3.4 Properties of ρMCTDH density operator propagation

MCTDH for wavefunctions conserves the total probability 〈Ψ|Ψ〉 and the
total energy 〈Ψ| H |Ψ〉. This follows directly from the Dirac-Frenkel vari-
ational principle. Similarly, the variational principle ensures that Tr{ρ2}
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and Tr{ρ2H} are conserved when density operators are propagated using
ρMCTDH for a closed system. Unfortunately, these are not the total proba-
bility, Tr{ρ}, and total energy, Tr{ρH}, but when the calculation converges,
the latter quantities are rather well conserved. The lack of (exact) energy
conservation made us think about using another variational principle [69,70],
which does ensure exact energy conservation. However this so called linear

mean-field approach was found to be less efficient and we do not discuss it
here.

For closed systems and type II density operators one additionally may
prove some interesting results [70].

1. Tr{ρn}, n = 1, 2, 3, . . . , is conserved.

2. A pure state remains pure.

3. Diagonalising the density and writing ρ =
∑

M pM |ΨM 〉〈ΨM | one
finds that the Dirac-Frenkel variational principle applied to type II
density operators is equivalent to

∑

M

p2
M 〈δΨM | iΨ̇M − HΨM〉 = 0 . (76)

and ṗM = 0

4. If ρ is pure, ρMCTDH(II) propagation is equivalent to the MCTDH
propagation of wavefunctions.

Point 1) tells us, that probability conservation is no problem (for type II
densities and closed systems). Point 2) follows from 1), but is worth to be
mentioning explicitely. Point 3) builds the bridge between type II density
and wavepacket propagation. The variational principle applied to type II
density operators is equivalent to a weighted sum over the variational prin-
ciples applied to the eigenfunctions of ρ, where the weights are the squares

of the eigenvalues of ρ. Point 4 follows from 3) and was already mentioned
in the previous section.

It is more difficult to make formally exact statements on the density
operator propagation of open systems. The only result we have, is the
explanation of the loss of total probability. Defining the projector

P̃ =
∑

J

|ΦJ〉〈ΦJ | , (77)
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which is the tensor product of all MCTDH projectors P (κ), and assuming a
Lindblad–type dissipation, Eq. (53), one obtains

Tr{ρ̇} = Tr{ḂBB} =
∑

J

〈ΦJ | L(ρ) |ΦJ 〉 = Tr{P̃L(ρ)}

=
∑

j

Tr

{

P̃VjρV †
j −

1

2
P̃ V †

j Vjρ −
1

2
P̃ ρV †

j Vj

}

=
∑

j

Tr
{

V †
j P̃ Vjρ

}

− Tr
{

V †
j Vjρ

}

= −
∑

j

Tr
{

(1 − P̃ )VjρV †
j (1 − P̃ )

}

≤ 0 , (78)

since P̃ ρ = ρP̃ = ρ by construction. The very first of the equations follows
because of the constraints (7,8), where g(κ) = 0 was assumed for sake of
simplicity. Note that the possible decrease of Tr{ρ} is due to representing ρ
in the finite, incomplete basis set {ΦJ}. This analysis offers a cure for the
problem. One simply replaces Vj by P̃ VjP̃ when propagating the coefficients.

(This is equivalent to replacing only the products V †
j Vj by V †

j P̃ Vj ). This
simple modification has shown to significantly improve the stability of type II
density operator propagation for open systems.

We have introduced two types of ρMCTDH density operator expansions,
but have not yet discussed which expansion is superior under given condi-
tions. Consider an uncorrelated system at high temperature. The type I
density operator propagation then becomes numerically exact with one sin-
gle configuration. A type II propagation, on the other hand, would require
many SPFs to correctly represent the thermal excitations. Going to the
other extreme, a pure state and a strongly correlated system, one notices
that type II now becomes much more efficient than type I. One needs more
SPDOs for type I than SPFs for type II to account for the correlation, and
it is more elaborate to propagate SPDOs than to propagate SPFs. To make
the comparison more vivid, let us distinguish between correlation and mix-
ing. In a coordinate representation the density operator is a 2f -dimensional
function ρ(Q,Q′) where Q are the coordinates of the f degrees of freedom of
the system. If this function is non-separable with respect to the coordinates
Qκ and Qκ′ of different degrees of freedom, κ 6= κ′, we speak of correlation
between these degrees of freedom. On the other hand, if ρ(Q,Q′) is non-
separable with respect to the coordinates Qκ and Q′

κ of a single degree of
freedom κ we speak of mixing in this degree of freedom. In particular, a
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pure state is unmixed in all degrees of freedom. Using this terminology one
can express the different performance of type I and type II expansions as
follows. The type I expansion is more efficient if there is more mixing than
correlation, whereas the type II expansion is to be preferred if correlation is
stronger than mixing.

4 Initial State

4.1 Hartree products

The time–dependent Schrödinger equation (1) is an initial value problem.
The initial state, Ψ(0), thus has to be supplied. Depending on the process to
be described, the initial state may be fully determined, e. g. as an eigenstate
of another Hamiltonian. In other situations there is some freedom of choice.
As the wavepacket is to be propagated by MCTDH, the initial wavepacket
must be supplied in MCTDH form. Fortunately, the initial wavepacket can
often be given as a simple Hartree product, which trivially is in MCTDH
form. To give an example: for an AB+C scattering event described in
Jacobian coordinates R, r, and θ, one may chose as initial wavefunction a
product of a Legendre polynomial in cos(θ), to specify a particular initial
rotational state j, a vibrational eigenfunction in r, to specify a particular
initial vibrational state v, and a Gaussian function in R. The width and the
momentum of the Gaussian determine the energy range to be covered.

In other cases, where a Hartree product may not be appropriate, one may
start with an initial guess such as a Hartree product, and alter this to the
desired function in MCTDH form. The problem is the incomplete nature of
the basis provided by an initial guess set of SPFs. For the representation of a
general function both the expansion coefficients and SPFs must be changed.

When a ground–state wavefunction is required, e. g. when photo-dis-
sociation is studied, one may start with a Hartree product which is close to
the ground–state and propagate it in negative imaginary time. It relaxes [93]
to the ground–state and, as this relaxation is performed by MCTDH, the
wavefunction is automatically in MCTDH form. A recent modification of
this approach, which also allows the generation of excited states, is described
in the following section. Finally, the initial wavefunction may be modified
by applying an operator to it. This will be described in section 4.3.
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4.2 Relaxation and improved relaxation

The generation of a ground–state wavefunction is conveniently done by en-
ergy relaxation [93]. An initial wavepacket, usually a Hartree product, is
propagated in negative imaginary time by H − E(t) , where E(t) denotes
the expectation value of H. The formal solution of this propagation reads

Ψ(t) = exp

(
∫ t

0
E(t) − E0 dt

)

e−(H−E0) t Ψ(0) , (79)

where E0 denotes the ground–state energy. The second exponential damps
all eigenstate contributions, except for the ground–state one, and the first
exponential ensures that Ψ(t) stays normalized. Thus with increasing time,
Ψ(t) converges towards the ground–state.

Energy relaxation is not the most efficient way to produce a ground–
state wavefunction, but here it is a very convenient way. As the relaxation
is performed by MCTDH, the computed ground–state wavefunction is auto-
matically in MCTDH form and may serve as an initial state of a subsequent
propagation. For this purpose, the initial ground–state wavefunction is usu-
ally either placed on an excited electronic state, or is modified by applying
an operator to it (see next section).

Energy relaxation can in principle also be used to produce excited states,
by keeping Ψ(t) orthogonal to already computed lower lying states. But this
is rather cumbersome to do and there is a more efficient way. As we are now
dealing with a time-independent problem, we will now employ the usual
time-independent variational principle

δ { 〈Ψ |H |Ψ〉 − E (〈Ψ |Ψ〉 − 1) } = 0 , (80)

where the eigen-energy E serves as Lagrange parameter. Employing the
MCTDH form (5), keeping the SPFs fixed and varying the coefficients yields

∑

L

HJL AL = E AJ , (81)

where HJL denotes the matrix elements of H with respect to the config-
urations ΦJ . This is of course the standard way to find the energy and
eigenfunction of a state, only here the basis is formed by the SPFs. As
initially selected, however, these may not provide a good description of the
desired eigenfunction.

To optimize the basis, a variation must be performed with respect to
the SPFs. Writing the wavefunction as in Eq. (10), and introducing the
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Lagrange parameters ε
(κ)
ij to keep the SPFs orthonormal, the variational

principle reads

δ
∑

jl

{ 〈ϕ
(κ)
j Ψ

(κ)
j |H |ϕ

(κ)
l Ψ

(κ)
l 〉 − ε

(κ)
jl ( 〈ϕ

(κ)
j |ϕ

(κ)
l 〉 − δjl ) } = 0 . (82)

Performing the variation yields

∑

l

〈H〉
(κ)
jl ϕ

(κ)
l =

∑

l

ε
(κ)
jl ϕ

(κ)
l . (83)

The ε
(κ)
jk may be determined by multiplication of Eq. (83) with 〈ϕ

(κ)
k |

ε
(κ)
jk =

∑

l

〈ϕ
(κ)
k | 〈H〉

(κ)
jl |ϕ

(κ)
l 〉 . (84)

Eqs. (83,84) can be transformed into

(

1 − P (κ)
)

〈H〉(κ)ϕϕϕ(κ) = 0 , (85)

or equivalently
(

1 − P (κ)
)(

ρρρ(κ)
)−1

〈H〉(κ)ϕϕϕ(κ) = 0 . (86)

Comparing this equation with Eq. (23) one notices, that the left hand side
of Eq. (86) is equal to −ϕ̇ϕϕ(κ) when propagating in negative imaginary time.
Hence a relaxation converges towards the variational solutions (83,84) of the
SPFs.

Our strategy to generate excited state eigenfunctions is thus as follows.
Starting with some initial guess for the wavefunction, one first builds and
diagonalizes H to obtain the expansion coefficients for the desired eigen-
function expressed in the initial SPF basis. The mean-fields are then built,
and the SPFs optimized by relaxation over some short time interval. After
that, the cycle is re-done till convergence is obtained. Always taking the
n th eigenvector of the matrix H will lead to convergence towards the n
th eigenstate of the Hamiltonian. The relaxation of the SPFs is a rather
efficient method, and it may be more efficient than the iterative diagonal-
ization [94, 95] conventionally used to solve Eqs. (83,84).

The dimension of the matrix H may become so large that a full diago-
nalization is not appropriate. Presently this method – called improved re-

laxation – is implemented with a Lanczos routine as diagonalizer. (The SIL
integrator could easily be generalized to serve as diagonalizer as well). This
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works very well as long as the ground–state or some low–lying excited state
is the target. Unfortunately, for higher lying states Lanczos performs very
poorly and should be replaced by a Davidson routine. This is planned. How-
ever, already with the present implementation it was possible to compute
the first 50 vibrational states of the CO2 molecule, using the Hamiltonian
of Ref. [62]. Additionally, we have computed the first few low–lying states
of HONO.

4.3 Modifying the initial state by applying operators

When the initial excitation is an electronic excitation and the Condon ap-
proximation is assumed, the ground–state wavefunction is placed onto an
excited electronic state without changing its form. This is easy to do. In
other situations, e. g. when exciting by infrared light, the initial wavefunc-
tion is given as a product of an (dipole) operator and a wavefunction. Let
us thus write the initial state as DΨ̃, where D denotes some operator and
Ψ̃ some wavefunction, usually a ground–state. The application of D on Ψ̃
is not straightforward, again because DΨ̃ has to be represented in MCTDH
form (5). The operation of D will change both the coefficients and the
SPFs. To arrive at an optimal representation we employ again a variational
principle and require

〈δΨ |Ψ − DΨ̃〉 = δ
∑

κ

∑

jl

ε
(κ)
jl

(

〈ϕ
(κ)
j |ϕ

(κ)
l 〉 − δjl

)

, (87)

where Ψ and Ψ̃ are assumed to be in MCTDH form (5) and D in product
form (31). The right hand side of Eq. (87) is included to ensure the ortho-

normality of the SPFs of Ψ. The ε
(κ)
jl are Lagrange parameters.

Variation with respect to the coefficients yields

AJ =
∑

L

〈ΦJ |D | Φ̃L〉 ÃL , (88)

where it is assumed that both sets of SPFs are orthonormal. Variation with
respect to the SPFs yields

∑

l

(

ρ
(κ)
jl − ε

(κ)
jl

)

ϕ
(κ)
l =

∑

l

〈Ψ
(κ)
j |D |Ψ̃

(κ)
l 〉 ϕ̃

(κ)
l . (89)

Rather than to determine the values of the Lagrange parameters ε
(κ)
jl , we

drop the matrix (ρ
(κ)
jl − ε

(κ)
jl ) and Gram-Schmidt orthogonalize the thus ob-

tained functions. This is legitimate as only the space spanned by the SPFs
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matters. Orthogonal transformations among the SPFs are accounted for by
the coefficients.

Eq. (89) is not an explicit equation, because the SPFs to be determined

are already needed when evaluating the mean–fields 〈Ψ
(κ)
j | D | Ψ̃

(κ)
l 〉. The

equations are thus to be solved iteratively. The iteration is started by setting

ϕ
(κ)(0)
j = ϕ̃

(κ)
j (90)

A
(0)
J =

∑

L

〈Φ
(0)
J |D | Φ̃L〉 ÃL , (91)

and then evaluating for i = 0, 1, 2, · · ·

a) ϕ
(κ)(i+1)
j =

∑

l

〈Ψ
(κ)(i)
j |D |Ψ̃

(κ)
l 〉 ϕ̃

(κ)
l , (92)

b) Gram–Schmidt orthogonalize the SPFs

c) A
(i+1)
J =

∑

L

〈Φ
(i+1)
J |D | Φ̃L〉 ÃL . (93)

We still need a criterion to detect convergence and to stop the iteration.
The coefficients and the SPFs do not necessarily converge, because, as al-
ready emphasized, only the space spanned by the SPFs is of relevance. A
convenient criterion is given by employing the MCTDH projector

Tr{P (κ)(i)P (κ)(i+1)ρ̂(κ)(i+1)} , (94)

as this provides a measure of the similarity of the i-th and the ((i + 1)-
th space. The MCTDH density operator is included to weight the weakly
occupied orbitals accordingly. Introducing the overlap matrix

Mjl = 〈ϕ
(κ)(i+1)
j |ϕ

(κ)(i)
l 〉 , (95)

we hence stop the iteration if, for each κ,

δ = 1 − Tr{M†ρρρTM}/Tr{ρρρ} (96)

is smaller than some threshold. δ vanishes when P (κ)(i) becomes equal to
P (κ)(i+1), or, equivalently, when M becomes a unitary matrix. The trans-
posed of the density matrix appears in Eq. (96) because of Eq. (25).

Turning from wavefunctions to density operators, we first note that one
is usually interested in forming an initial density operator by the operation

ρ = −i[D, ρ̃] (97)
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as this is – similar to DΨ̃ for wavefunctions – the first order contribution of
an impulsive excitation D(t) = Dδ(t). The variational principle now reads

〈〈

δρ
∣

∣

∣
ρ + i[D, ρ̃]

〉〉

= 0 , (98)

where we have dropped the Lagrange parameters, because we will ensure the
ortho-normality by explicit Gram–Schmidt orthogonalization. The deriva-
tions for type I and type II density operators are considerably more lengthy
than in the wavefunction case and will not be sketched here. The final results
read for type I:
Start the iteration with the initial values

σ
(κ)(0)
j = σ̃

(κ)
j (99)

B
(0)
J = −i

∑

L

Tr
{

Ω
(0)
J [D, Ω̃L]

}

B̃L (100)

and evaluate for l = 0, 1, 2, · · ·

a) σ
(κ)(l+1)
j = −iTr

{

Π
(κ)(l)
j

[

D,
∑

m

Π̃(κ)
m σ̃(κ)

m

]

}

κ
, (101)

b) Gram–Schmidt orthogonalize the SPDOs

c) B
(l+1)
J = −i

∑

L

Tr
{

Ω
(l+1)
J [D, Ω̃L]

}

B̃L . (102)

Similarly we start the iteration for type II with the initial values:

ϕ
(κ)(0)
j = ϕ̃

(κ)
j (103)

B
(0)
J,L = −i

〈

Φ
(0)
J

∣

∣

[

D, ρ̃
]
∣

∣Φ
(0)
L

〉

(104)

and evaluate for l = 0, 1, 2, · · ·

a) ϕ
(κ)(l+1)
j = −i

∑

L

∑

J

κ〈

Φ
(l)
Jκ

∣

∣

[

D, ρ̃
]∣

∣Φ
(l)
L

〉

(105)

b) Gram–Schmidt orthogonalize the SPFs

c) B
(l+1)
J,L = −i

〈

Φ
(l+1)
J

∣

∣

[

D, ρ̃
]
∣

∣Φ
(l+1)
L

〉

. (106)

The actual working equations are obtained by expanding ρ̃ in MCTDH form.
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5 Analysis

5.1 From time evolved wavefunctions to observables

MCTDH is an algorithm to solve the time–dependent Schrödinger equa-
tion. It thus provides us with the time evolved wavepacket Ψ(t). This,
however, is usually not what is finally desired. The quantities of interest
are observables such as spectra, transition probabilities, cross-sections, etc.
In any time–dependent approach an analysis step has to follow the propa-
gation. Due to the special form of the MCTDH wavefunction, Eq. (5), one
may have to re–design the analysis algorithm. For example, this special form
does not allow the summation of different MCTDH wavefunctions, including
wavefunctions at different times or from different calculations on the same
system, because the SPFs will be different. On the other hand, the very
compact representation of the MCTDH wavefunction may help to speed
up the analysis. For instance, let Ψ =

∑

J AJΦJ and Ψ̃ =
∑

L ÃLΦ̃L be

two MCTDH wavefunctions, and let Ω =
∑M

r cr ω
(1)
r · · ·ω

(f)
r be an operator

given in product form. Then the evaluation of the matrix element

〈Ψ |Ω |Ψ̃〉 =
M
∑

r=1

cr

∑

j1

. . .
∑

jf

A∗
j1...jf

×
∑

l1

〈ϕ
(1)
j1

|ω(1)
r | ϕ̃

(1)
l1

〉 . . .
∑

lf

〈ϕ
(f)
jf

|ω(f)
r | ϕ̃

(f)
lf

〉Ãl1... lf(107)

becomes very fast, as only one–dimensional integrals are required.
As sums of wavefunctions are not allowed, it is not possible to (E ↔ t)

Fourier transform the MCTDH wavefunction. In practice this is no restric-
tion, because the analysis algorithm can be formulated such that only Fourier
transforms of matrix elements appear. In fact, it is almost always possible
to re–formulate an analysis algorithm such that sums of wavefunctions do
not appear. A very simple example may be illustrative. The norm of the
difference between two wavefunctions, ‖Ψ − Ψ̃‖, can be evaluated using

‖Ψ − Ψ̃‖2 = ‖Ψ‖2 + ‖Ψ̃‖2 − 2Re 〈Ψ | Ψ̃〉 . (108)

The three terms on the right hand side are all of type (107), with Ω = 1.
Using the Heidelberg MCTDH package [96] the auto-correlation, 〈Ψ(0) |

Ψ(t)〉, the cross-correlation, 〈Ψ̃ | Ψ(t)〉, and time–dependent expectation
values, 〈Ψ(t) | Ω | Ψ(t)〉, may be calculated on the fly, i. e. one does not
need to store the wavefunction. The correlation functions are then Fourier
transformed or filter-analyzed [1–4, 62] to obtain spectra. For more details
the reader is referred to the review [15] and the MCTDH User’s Guide [97].
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5.2 Flux analysis

To determine transition or reaction probabilities of a scattering event one
may project the evolved wavepacket onto outgoing asymptotic states. A
more efficient way is to determine the quantum flux (or the projected quan-
tum flux) going through a surface which divides interior from asymptotic
regions. The flux operator, which measures this quantum flux, is defined
as the commutator of the Hamiltonian with a characteristic function of an
asymptotic region

F̂ = i[H,Θ] . (109)

In an reactive scattering event there is more than one asymptotic region
because there is more than one arrangement channel, but we will not indicate
the dependence on the arrangement channel here. For the sake of simplicity
we assume that the dividing surface is perpendicular to r, the coordinate of
dissociation. Hence

Θ = h(r − rc) , (110)

where h denotes the Heaviside-step-function and rc is the point where the
dividing surface cuts the r coordinate. The energy resolved quantum flux is
defined as

F (E,Ψ) = 2π 〈Ψ|δ(H − E) F̂ δ(H − E)|Ψ〉 , (111)

where Ψ is the (initial) state under consideration. For further reference we
define the energy distribution of the state Ψ

|∆(E) |2= 〈Ψ|δ(H − E)|Ψ〉 . (112)

This energy distribution may, e. g., be evaluated by Fourier transform of
the autocorrelation function. It can be shown [15, 98] that the flux and the
energy distribution are connected trough the reaction probability R(E)

F (E,Ψ) = |∆(E) |2 R(E) . (113)

This equation was used to determine total, but initial state selected, reac-
tion probabilities and cross–sections [38–41]. However, if there is only one
arrangement channel, one finds R(E) = 1 and hence F (E,Ψ) = | ∆(E) |2.
Thus, the evaluation of the (total) flux is in this case just an alternative
way to compute the spectrum. However, the flux analysis allows the com-
putation of a partial flux by introducing projectors onto internal fragment
states. One merely replaces F̂ in Eq. (111) by P F̂P , where P denotes such
a projector. Note that P commutes with F̂ , as it does not operate on the
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dissociative coordinate r. Using this formalism, one may determine the ex-
citation cross-sections of an inelastic scattering event. See Ref. [47] for an
example.

To derive working equations for evaluating the flux, we augment the
Hamiltonian with a complex absorbing potential (CAP) [99–102]

H → H − iW , (114)

where W is a smooth positive function of r that vanishes for r < rc. We
replace the δ–functions in Eq. (111) by their Fourier representations and
find after some arithmetic [15, 41, 98]

F (E,Ψ) =
2

π
Re

∫ T

0
[gW (τ) + gΘ(τ)] eiEτdτ . (115)

The correlation functions gW and gΘ are defined as

gW (τ) =

∫ T−τ

0
〈Ψ(t) | PWP | Ψ(t + τ)〉dt (116)

and

gΘ(τ) =
1

2
〈Ψ(T − τ) | PΘP | Ψ(T )〉 . (117)

The symbol T denotes the final propagation time. Integrating the flux over
all energies one obtains

∫

F (E,Ψ) dE = 2

∫ T

0
〈Ψ(t) | PWP | Ψ(t)〉 dt + 〈Ψ(T ) | PΘP | Ψ(T )〉

(118)
which is the sum of the probability annihilated by the CAP and the one still
present at time T in the asymptotic region.

Note that gΘ vanishes for T → ∞ since Ψ(T ) vanishes because of the
CAP. Thus gΘ may be dropped (and, in fact, has been ignored in earlier
calculations), but its inclusion [41] makes the flux converge faster with in-
creasing T . The formula for gΘ allows a vivid interpretation. Assume that
one is not using CAPs but is working with very long, almost infinite grids.
Then Eqs. (115, 117) tells us that the flux is proportional to the Fourier
transform of the autocorrelation function of the wavepacket projected onto
the asymptotic region under consideration.

The time–consuming step of the flux analysis is the evaluation of the
matrix elements (116). These are fortunately of form (107) and can thus be
done efficiently. The flux analysis requires that the wavefunction is stored for

36



several intermediate times. As the MCTDH wavefunction is very compact,
it is usual no problem to store hundreds of wavefunctions. For more details
on the flux analysis see [15, 41, 98].

Flux analysis of MCTDH wavefunctions has been used to evaluate ini-
tial state selected total reaction cross-sections [38–41], and to determine
diffraction and rotational state resolved transition probabilities of inelastic
molecule–surface scattering [47]. The flux analysis as presented here has
also been used by other groups on non–MCTDH wavefunctions, e. g. to
study charge–exchange in ion–atom collisions [103]. The present form of
flux analysis should not be confused with the flux analysis based on flux–
flux–correlation functions [104,105] and flux eigenstates (although there are
some connections). The latter method has been used extensively in the
group of U. Manthe to determine reaction rates [48–58].

6 Concluding Remarks and Outlook

Over the last decade, the MCTDH method has established itself as a very
efficient and general algorithm for wavepacket propagation studies. Its basic
feature is the use of a variational time-dependent basis set that results in
an extremely compact wavefunction, with efficient convergence on the exact
solution. While it may be applied to study study small systems accurately,
the full power of the method is uncovered when turning to large systems. In
particular, it is able to provide quantitative results when the primitive basis
set cannot fit into memory, and as a result has set a few benchmarks that
are outside the capabilities of other methods (for example Refs. [13, 29, 33–
35, 65, 66]).

Although MCTDH suffers from the exponential scaling typical of wave-
packet propagation methods, the base to which it scales is considerably
lower than the base to which the standard method scales. The resources
required can be further minimized by the use of combined modes, rather
than the one-dimensional single-particle functions used in the early calcula-
tions. The effort for the propagation can in this way be balanced between
that required for the wavefunction expansion coefficients and that required
for the multi-dimensional SPFs. Even so, in typical applications MCTDH
will be limited to 15-30 degrees of freedom, although 80 degrees of freedom
have been treated for the spin-boson case [65].

There are several strategies to enable MCTDH to go to even larger sys-
tems. MCTDH as defined above performs a (time-dependent) full CI in the
active space, i.e. the space spanned by the SPFs. Selecting the most impor-
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tant configurations is a way to make MCTDH smaller and faster and thus
enabling the treatment of larger systems. This version of MCTDH, called
S-MCTDH, has been successfully tested [84]. Another approach tackles the
bottleneck provided by the propagation of many-dimensional SPFs. This,
the cascading method, recognizes that there is a method capable of prop-
agating wavepackets of several dimensions: MCTDH. Thus, the idea is to
use MCTDH to propagate the SPFs of an underlying MCTDH propagation.
If cascading works as expected, it is likely that one can treat systems with
more than 100 degrees of freedom.

With the extension of the method to density operators in the ρMCTDH
algorithm, the advantages of the compact functional form can be brought
to use in another field of theoretical chemistry, that dealing with open and
mixed systems. This is an area of great importance, dealing with realistic
problems past the idealized form of a single pure state represented by a
wavefunction. The study of density operators is, however, hampered by
the dimensionality of the problem, which at the moment restricts studies
to small models far away from systems of chemical interest. It is to be
hoped that the application of ρMCTDH here will help to advance this field
of research significantly.

Finally, one of the key ingredients for a successful computational method
is an efficient and easy to use program. This is particularly true of a difficult
to implement algorithm, such as MCTDH. The program we are developing,
the Heidelberg MCTDH package, is now used by a number of groups. Details
of the program, and how to obtain it, are given in App. A.
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A The Heidelberg MCTDH Package

The Heidelberg MCTDH package is a set of programs for multi-dimensional
quantum dynamics, and can do much more than wavefunction (or density
operator) propagation using the MCTDH algorithm. For example, numer-
ically exact propagations are also possible using a short-iterative Lanczos
integrator. As a by-product of the improved relaxation method, it is also
possible to generate a desired eigenfunction of an operator, and for smaller
systems the spectrum of a Hamiltonian may be obtained by Lanczos diago-
nalization of a Hamiltonian in a DVR basis.

The package consists of more than 40 programs, the largest and most
important of which is called simply mctdh. Using keyword input read from
text files, it is able to set up a system using a range of DVRs or FFT for
the primitive basis, form an initial wavefunction (density operator), and
propagate this wavefunction (density operator) in time. Perhaps one of
the most powerful features of the program is that it uses a text input to
generate the operator. In fact, if the operator has a simple analytic form, it
is often possible to implement it without having to touch the code. Routines
coding for more complicated functions can also be linked to the program.
If potential functions are not in MCTDH form, there is the potfit program
to make the transformation. It is also possible to use the CDVR method,
or even to use the potential as it is, of course with resulting inefficient
propagation. Time-dependent Hamiltonians can also be used.

Other important programs of the package are a set of analysis tools.
These include filter, which performs a filter analysis of the autocorrelation
function, and flux, which does the flux analysis. Various programs plot one–
and two–dimensional graphs of the wavefunction and the potential energy
surface, and simple movies can be made. Other programs can be used
to check the convergence of a calculation, generate a spectrum from the
autocorrelation function, etc. All plotting uses the freely available Gnuplot
program, often driven using interactive menus.

The package consists of more than 200,000 lines of (mainly FORTRAN
77) code. The documentation consists of both on-line documentation (in
HTML) the MCTDH User’s Guide (in LaTeX). The installation is performed
by convenient installation scripts. We have run MCTDH on DEC–alpha,
IBM–RS6000, Cray, Sun, Silicon Graphics and HP computers, and in par-
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ticular on Linux–PC’s. The Heidelberg MCTDH package is available to
interested researchers. For more details see:
http://www.pci.uni-heidelberg.de/tc/usr/mctdh/
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[37] A. Jäckle and H.-D. Meyer, J. Chem. Phys. 102, 5605 (1995).

[38] A. Jäckle and H.-D. Meyer, J. Chem. Phys. 109, 2614 (1998).
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