Corrections

The multiconfiguration time-dependent Hartree (MCTDH) method:
A highly efficient algorithm for propagating wavepackets

M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer

In Eqs. (B.31), (B.33), and (B.40) a "π" is missing.
In Eq. (B.43) the expression \((l + m)!/(l - m)!\) is to be replaced by its reciprocal value.
In Eq. (B.51) \(c_l^{-1}\) must be replaced by \(c_{l+1}^2\)
In Eq. (B.65) \(-\frac{1}{3}\) must be replaced by \(\frac{1}{3}\)

The corrected equations read:

\[
\phi_j(x) = (2j)!^{-1/2} \left(\frac{m\omega}{\pi}\right)^{1/4} H_j \left(\sqrt{m\omega}(x-x_{eq})\right) \\
\times \exp\left(-\frac{1}{2} m\omega (x-x_{eq})^2\right) \quad (B.31)
\]

\[
w_{\alpha}^{1/2} = (m\omega/\pi)^{-1/4} \exp\left(\frac{1}{2} m\omega (x_\alpha-x_{eq})^2\right) U_{0\alpha} \quad (B.33)
\]

\[
w_{\alpha}^{1/2} = \pi^{1/4} (m\omega)^{-3/4} (x-x_0)^{-1} \exp\left(\frac{1}{2} m\omega (x_\alpha-x_{eq})^2\right) U_{1\alpha} \quad (B.40)
\]

\[
\varphi_{l-m+1}(\theta) = \tilde{P}_l^m(\theta) = (-1)^m \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta) \quad (B.43)
\]

\[
c_l + c_{l+1} \tilde{P}_l^m(x) + \left(c_l^2 + c_{l+1}^2 - x^2\right) \tilde{P}_l^m(x) + c_l c_{l-1} \tilde{P}_{l-2}^m(x) = 0 \quad (B.51)
\]

\[
D_{\alpha\beta}^{(2),\text{DVR}} = -\left(\frac{N^2}{M^2}\right)^2 \left\{ \begin{array}{ll}
\frac{1}{3} + \frac{6(N+1)^2}{2(N+1)^2} \sin^2(\frac{\pi \alpha}{N}) & \alpha = \beta \\
\frac{1}{3} - \frac{2(-1)^{\alpha-\beta}}{(N+1)^2} \sin(\frac{\alpha\pi}{N}) \sin(\frac{\beta\pi}{N}) & \alpha \neq \beta
\end{array}\right. \quad (B.65)
\]

A copy of the article may be downloaded from the Elsevier server, or from the MCTDH homepage: http://www.pci.uni-heidelberg.de/tc/usr/mctdh/ where one finds the postscript version of the submitted LATEX document with, however, the above listed errors already corrected.