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1 Introduction

The time-evolution of a molecular system through a conical intersection is multi-
dimensional in nature, i.e. its description cannot be reduced to a single reaction
coordinate. In addition to this, such processes are inherently quantum mechan-
ical due to the mixing of electronic states as the intersection is traversed, and a
powerful quantum dynamics method is required to treat these, often large, systems
accurately.

The most intuitive way of obtaining a numerically exact solution of the time-
dependent Schrödinger equation is to use standard wavepacket propagation meth-
ods. These represent the evolving system wavefunction using basis set expansion
techniques or grid representations [1–3]. Unfortunately, the standard methods are
restricted by an exponential increase in the computational resources required with
the number of degrees of freedom treated, usually no more than 4-6 nuclear modes
can be included. Systems in which vibronic coupling plays a role are often much
larger than this. To treat these systems using the standard methods it is then
necessary to turn to reduced dimensionality models in which only a few degrees of
freedom are explicitly included, and the remainder either ignored or included in a
phenomenological manner.

An alternative is to use approximative methods and include all degrees of free-
dom. In this chapter we discuss and apply the multi-configuration time-dependent
Hartree (MCTDH) method [4–6]. At the present time, this method is the only
one that can treat reliably, with controllable accuracy, the multi-mode dynamics
of polyatomic systems like the ones discussed below. By using a time-dependent
basis set that adapts with the evolving wavepacket, the MCTDH algorithm extends
wavepacket propagation to larger systems. Importantly, calculations converge on
the numerically exact solution and so the error introduced by the approximative na-
ture of the method can be controlled. Using MCTDH, conically intersecting systems
with up to 24 degrees of freedom have been studied.
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Importantly, the vibronic coupling model Hamiltonian described in detail in
section 2 is of a form that allows the full efficiency of the method to be realized.
This combination of model and propagation technique thus allows us to study com-
pletely and in detail the multidimensional molecular dynamics through a conical
intersection.

As well as providing an overview of the MCTDH methods and the vibronic
coupling Hamiltonian, results will be presented in this chapter that highlight the
features of three photo-physical systems in which vibronic coupling plays a crucial
role. Here it will become clear that in some cases many degrees of freedom are
required for a faithful description of system dynamics through a conical intersection,
and for these the MCTDH method is able to provide accurate information.

2 Vibronic coupling Hamiltonian

The existence of a conical intersection within or close to the Franck-Condon zone
has very dramatic effects on the dynamics and hence on the spectra of polyatomic
molecules. Usually the density of spectral lines becomes very high and only the
envelope, rather than the individual line, is of interest. This allows one to con-
centrate on short-time dynamics. For a reliable treatment of the dynamics it is
important to describe the vicinity of the Franck-Condon point accurately. How-
ever, as only short-time dynamics is required, the interaction potential away from
the Franck-Condon point may be of lesser accuracy.

The adiabatic potential energy surfaces in the vicinity of a conical intersection
usually exhibit a rather complicated form, i.e. they are strongly anharmonic and
may show double or multiple minima. In contrast to the adiabatic surfaces, the
diabatic ones often show an astonishingly simple structure and may – for the region
of interest – be well approximated by simple harmonic potentials. Combined with
the fact that the diabatic coupling is well behaved, non-singular, and of potential
type, this makes the diabatic representation extremely attractive.

We are interested in the study of absorption or ionisation spectra of small poly-
atomic molecules. Before the absorption of a photon (or the collision with an elec-
tron) the molecule is assumed to be in its electronic and vibrational ground state (we
ignore rotation). We use the dimensionless normal coordinates of the ground state
throughout and write the ground state Hamiltonian in harmonic approximation as

HGS = Tn +

f
∑

i=1

ωi

2
Q2

i (1)

Tn = −

f
∑

i=1

ωi

2

∂2

∂Q2
i

(2)

where f denotes the number of degrees of freedom and ωi is the i-th normal mode
frequency (we use h̄ = 1). The ground state is assumed to be well separated from
all other electronic states. After excitation, however, the electronic structure is
described by a set of close lying, interacting states. The vibronic Hamiltonian for
this set of states reads

H = Tn + W(Q) . (3)

Assuming – for sake of simplicity – that there are only two interacting excited
states of relevance and developing the diabatic potential energy matrix W in a
power series around the equilibrium position of the ground state and keeping only
terms up to second order, one arrives at
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H = Tn1 +

f
∑

i=1

ωi

2
Q2

i 1 +

(

ǫ1 0
0 ǫ2

)

+
∑

i∈G1

(

κ
(1)
i 0

0 κ
(2)
i

)

Qi

+
∑

(i,j)∈G2

(

γ
(1)
i,j 0

0 γ
(2)
i,j

)

QiQj

+
∑

i∈G3

(

0 λi

λi 0

)

Qi

+
∑

(i,j)∈G4

(

0 µi,j

µi,j 0

)

QiQj . (4)

The first two terms reproduce the ground state Hamiltonian, but located on the
diagonal of the electronic 2 × 2 matrix. The two energies ǫ1 and ǫ2 are the vertical
excitation energies. The next four sums describe the linear and the bilinear coupling
terms.

Due to symmetry considerations the sums run only over restricted sets of modes.
G1 is the set of totally symmetric modes :

G1 : Γi ⊃ ΓA, (5)

where Γi is the irreducible representation of the normal–mode coordinate Qi and
ΓA the totally symmetric representation. These modes provide the linear intra-state
coupling. They are called tuning modes as they modulate the energy gap between
the two states.

G2 is the set of pairs of modes that supplies the bilinear and quadratic on–
diagonal couplings:

G2 : Γi × Γj ⊃ ΓA. (6)

The parameters γ
(s)
i,j account for frequency shifts and for the so-called Duschinsky

rotation [7].
G3 is the set of modes which provide linear coupling between the two interacting

states :
G3 : Γi × Γ1 × Γ2 ⊃ ΓA, (7)

where Γ1 and Γ2 are the irreducible representations of the two electronic states
considered. These modes account for the linear inter-state coupling. They are
called coupling modes as they couple the two electronic states. Finally, G4 is the set
of all pairs of off–diagonal coupling modes which bilinearly enter the Hamiltonian:

G4 : Γi × Γj × Γ1 × Γ2 ⊃ ΓA. (8)

When only linear coupling terms are included, i. e. when γ and µ are set to zero,
one arrives at the so-called linear vibronic coupling (LVC) model.

A high symmetry of the molecule does not only help to (sometimes dramatically)
reduce the number of parameters, it also provides a solid basis for the vibronic
coupling model Hamiltonian. When the two interacting electronic states are of
different symmetry (as assumed here), the inter-state coupling must be an odd
function of the coupling coordinate. Hence there can be no constant or quadratic
terms, only linear or bilinear ones are allowed. The vibronic coupling Hamiltonian
was first derived by Cederbaum et. al. [8,9] and is more fully described in a review
article by Köppel et. al. [10] and in Chapter II.1 of this book.
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Quantum chemistry supplies us with the adiabatic potential energy surfaces
Vi, and – at considerably higher cost – with the non-adiabatic coupling elements.
Fortunately, the latter are not needed when determining the parameters of the
vibronic coupling Hamiltonian, the knowledge of the adiabatic potential energy
surfaces alone is sufficient. The parameters of the vibronic coupling Hamiltonian
are determined by comparing the adiabatic potential energy surfaces obtained by
diagonalising the diabatic model potential with those obtained by quantum chem-
istry. The most simple and most direct way is to require that the lowest order
derivatives agree at the Franck-Condon point, Q = 0. This readily yields for the
linear parameters:

κ
(s)
i =

∂Vs

∂Qi

|
Q=0

, (9)

λ2
i =

1

8

∂2

∂Q2
i

[V2(Q) − V1(Q)]
2
|
Q=0

. (10)

The equations for the parameters of the bilinear and quadratic terms are more
complicated. They are discussed e. g. in Ref. [11].

It has been found, that the determination of the parameters may become unsta-
ble when going beyond the linear model. Much more convenient is then to determine
the parameters by a least-squares fit, i. e. to minimize the function [12]

L(κ, λ, γ, µ) =
M1
∑

n=1

w(1)
n

[

V mod
1 (ǫ1, ǫ2, κ, λ, γ, µ;Qn) − V1(Qn)

]2

+

M2
∑

n=1

w(2)
n

[

V mod
2 (ǫ1, ǫ2, κ, λ, γ, µ;Qn) − V2(Qn)

]2
. (11)

Here κ, λ, γ, µ stand for all the coupling constants and V mod
1,2 denote the adiabatic

surfaces obtained by diagonalising the potential part of the vibronic coupling Hamil-
tonian, Eq. (4). There is some unavoidable arbitrariness in this approach, as the

points Qn and their weights w
(s)
n have to be chosen. However, the least-squares

approach is to be preferred when more than linear coupling terms are included.
Finally we remark that one may replace the low order polynomials by other

functions, if those functions would better describe the particular molecule under
discussion. For example, the inter-state coupling mode of molecules like ethylene,
allene, or butatriene is the torsion of the two CH2 end-groups. To correctly repro-
duce the periodicity of this degree of freedom one may replace λQ by α sin(βQ),
where αβ = λ and where Q is the normal mode coordinate representing the tor-
sion [12].

3 Multiconfiguration Time-Dependent Hartree
(MCTDH)

3.1 Introduction

Wavepacket propagation methods are an essential tool for understanding the molec-
ular dynamics underlying many physical phenomena, especially those that occur on
an ultrafast (sub-picosecond) time scale. The standard method is the numerically
exact solution of the time-dependent Schrödinger equation, representing the wave-
packet and Hamiltonian in an appropriate basis. The method is however restricted
by the numerical resources required, which grow exponentially with the number of
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degrees of freedom, and studies of systems with more than six degrees of freedom
are in general impossible.

In an attempt to remove this obstacle, approximate methods exemplified by the
time-dependent Hartree (TDH) method have been developed. Here, the wavefunc-
tion is represented as a Hartree product of one-dimensional functions, and as a result
the equations of motion for the wavepacket are a set of coupled one-dimensional
equations. The effort required is thus significantly reduced, but at the cost that
the correlation between the degrees of freedom is no longer treated correctly. For
strongly correlated systems like the vibronic coupled ones, TDH completely fails.

The multiconfiguration time-dependent Hartree (MCTDH) method [4–6,13,14]
combines the benefits of these two extremes. As the name implies, the wavefunc-
tion is described by an expansion in Hartree products (configurations). Using this
wavefunction ansatz and solving the time-dependent Schrödinger equation by a
variational method leads to a set of coupled equations of motion for the expansion
coefficients and for the functions used to build the Hartree products. The latter are
known as single-particle functions (SPFs). In the limit of convergence with respect
to the number of configurations included, the results become numerically exact. An
important feature of the method is that, due to its variational character, small sets
of SPFs are in general sufficient to produce good results. The MCTDH method
thus requires considerably less effort and memory than the standard one.

3.2 Equations of Motion

The MCTDH method is to a large extent defined through its ansatz for the wave-
function [4–6,13]

Ψ(Q1, . . . , Qf , t) =

n1
∑

j1=1

. . .

nf
∑

jf =1

Aj1...jf
(t)

f
∏

κ=1

ϕ
(κ)
jκ

(Qκ, t) , (12)

where f denotes the number of degrees of freedom, Q1, . . . , Qf are the nuclear

coordinates, the Aj1...jf
denote the MCTDH expansion coefficients, and the ϕ

(κ)
jκ

are the nκ expansion functions for each degree of freedom κ, the SPFs.
We simplify the notation by introducing the composite index J

J = (j1, j2, . . . , jf ) , (13)

and the configuration

ΦJ =

f
∏

κ=1

ϕ
(κ)
jκ

, (14)

which is known as a Hartree product. The MCTDH wavefunction is thus a super-
position of Hartree products. This explains the name of the method. Alternatively
one may interpret Eq. (12) as an expansion of the wavefunction in a time-dependent
product basis. Since the basis set functions follow the wavepacket, one may expect
that the numbers, nκ, of SPFs, needed to ensure convergence, are rather small. The
SPFs are given only numerically, and in a practical calculation they thus have to
be represented in an underlying – so-called primitive – basis set

ϕ
(κ)
jκ

(qκ, t) =

Nκ
∑

l=1

c
(κ)
ljκ

(t) χ
(κ)
l (qκ) .

MCTDH will be of advantage if nκ < Nκ (κ = 1, . . . , f). The primitive basis

functions χ
(κ)
l are in practice often replaced by a discrete variable representation

(DVR) grid [6,15,16], and we use the word grid as synonymous with primitive basis.
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The equations of motion for the coefficients and the SPFs are derived from the
Dirac-Frenkel variational principle [17,18]

〈δΨ |H − i∂/∂t |Ψ〉 = 0 . (15)

As the coefficients and the SPFs are time-dependent, there are some ambiguities
in the equations of motions which must be lifted by imposing constraints. The
simplest set of constraints reads

〈ϕ
(κ)
j (t) | ϕ̇

(κ)
l (t)〉 = 0 . (16)

These constraints minimise the motion of the SPFs and keeps them orthonormal.
For a discussion of other constraints see Ref. [5,6]. Employing the above constraints,
the equations of motion read [5, 6]

iȦJ =
∑

L

〈ΦJ |H |ΦL〉AL , (17)

iϕ̇
(κ)
j =

∑

l,m

(

1 − P (κ)
) (

ρ(κ)−1
)

jl
〈H〉

(κ)
lm ϕ(κ)

m (18)

where

P (κ) =

nκ
∑

j=1

|ϕ
(κ)
j 〉〈ϕ

(κ)
j | (19)

denotes the projector on the space spanned by the SPFs for the κth degree of
freedom, and

ρ
(κ)
jl = 〈Ψ

(κ)
j |Ψ

(κ)
l 〉 (20)

and
〈H〉

(κ)
jl = 〈Ψ

(κ)
j |H |Ψ

(κ)
l 〉 (21)

denote a density matrix and a matrix of mean-fields, respectively. Here

Ψ
(κ)
l = 〈ϕ

(κ)
l |Ψ〉κ (22)

denotes a single–hole function. Obviously, Ψ
(κ)
l depends on all coordinates except

the κ’s one. The mean-fields are thus one-dimensional operators, acting solely on
the κ’s degree of freedom.

The MCTDH equations of motion (17,18) are a fairly complicated set of coupled
non-linear differential equations. (Note that Ȧ depends on ϕ through 〈ΦJ |H |ΦL〉
and ϕ̇ depends on A through ρ and 〈H〉). However, there are fewer equations
compared to the set of linear differential equations of the standard method, i.e by
simply employing directly the primitive product basis set. In fact, the number
of equations is often smaller by several orders of magnitude. This is what makes
MCTDH both small and fast.

3.3 Representation of the Hamiltonian

The solution of the MCTDH equations of motion requires the evaluation of the
Hamiltonian matrix 〈ΦJ |H |ΦL〉 and the mean fields 〈H〉 at each time step of the
integration. These are formally f and f -1 dimensional integrals. Doing the integrals
by multi-dimensional quadrature over the primitive grid points would slow down
MCTDH such that it would not be competitive.

The multi-dimensional integrations can be circumvented if the Hamiltonian is
written as a sum of products of single-particle operators,

H =
s

∑

r=1

cr

f
∏

κ=1

h(κ)
r , (23)
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with expansion coefficients cr. Using Eq. (23) the matrix elements can be expanded
as

〈ΦJ |H |ΦL〉 =

s
∑

r=1

cr

f
∏

κ=1

〈ϕ
(κ)
jκ

|h(κ)
r |ϕ

(κ)
lκ

〉 , (24)

and similarly for the mean fields (see Ref. [5, 6]). Note that only one-dimensional
integrals are used now. Fortunately, the vibronic-coupling Hamiltonian, derived in
the previous section, is precisely of form (23) with comparatively few expansion
terms. This makes MCTDH very well adapted for solving the vibronic coupling
dynamical problem.

For the general case we remark that the kinetic energy operator normally has
the required form (23), but the potential energy operator often does not. It then
may be fitted to the product form. A convenient, systematic, and efficient approach
to obtain an optimal product representation is described in Refs. [6,19]. We finally
note that there are other methods which evaluate the Hamiltonian matrix elements
efficiently without relying on a product expansion (23). Most notable here is the
CDVR method of Manthe [20].

The building of the mean fields is still the most time consuming part of MCTDH.
To reduce the effort, the mean fields are evaluated not at every integrator time
step but at larger (so called update) time steps. This constant mean field (CMF)
integration scheme is described in Refs. [6, 21]. The use of CMF speeds up the
calculation by typically a factor of 10.

3.4 Non-adiabatic systems

It was implicitly assumed in the discussion so far, that the motion of the molec-
ular nuclei is determined by a single Born-Oppenheimer potential energy surface.
However, in vibronic coupling systems, there are several coupled electronic states of
importance. The MCTDH algorithm hence has to be extended to deal with more
than one electronic state.

The most direct way to accomplish this is to choose one extra degree of freedom,
the κeth say, to represent the electronic manifold [22,23]. The coordinate Qκe

then
labels the electronic states, taking only discrete values Qκe

= 1, 2, . . . , σ, where σ is
the number of electronic states under consideration. The number of SPFs for such
an electronic mode is set to the number of states, i.e. nκe

= σ. The equations of
motion (17) and (18) remain unchanged, treating nuclear and electronic modes on
the same footing. This is called the single-set formulation, since only one set of
SPFs is used for all the electronic states.

Contrary to this, the multi-set formulation employs different sets of SPFs for
each electronic state [24,25]. In this formulation the wavefunction Ψ and the Hamil-
tonian H are expanded in the set {|α〉} of electronic states:

|Ψ〉 =
σ

∑

α=1

Ψ(α) |α〉 (25)

and

H =

σ
∑

α,β=1

|α〉H(αβ)〈β | , (26)

where each state function Ψ(α) is expanded in MCTDH form (12). The derivation of
the equations of motion corresponds to the single-set formalism, except that extra
state labels have to be introduced on the various quantities such as mean fields and
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density matrices. The equations of motion now read

iȦ
(α)
J =

σ
∑

β=1

∑

L

〈Φ
(α)
J |H(αβ) |Φ

(β)
L 〉A

(β)
L , (27)

iϕ̇
(α,κ)
j =

∑

lmβ

(

1 − P (α,κ)
)(

ρ(α,κ)−1
)

jl
〈H〉

(αβ,κ)
lm ϕ(β,κ)

m , (28)

with mean-fields
〈H〉

(αβ,κ)
jl = 〈Ψ

(α,κ)
j |H(αβ) |Ψ

(β,κ)
l 〉 . (29)

The superscripts α and β denote to which electronic state the functions and oper-
ators belong. A fuller derivation of these equations is given in Ref. [6, 21,25].

The single-set formulation is to be preferred when the different electronic states
have a similar form. The well known spin-boson model is in this category [26].
When the motion on the different electronic states is very different, the multi-set
formulation becomes the appropriate choice. The smaller number of SPFs needed
for convergence then over-compensates the overhead of the multi-set formulation.
For vibronicly coupled systems, we have always chosen the multi-set formulation.

3.5 Mode combination

The importance of the memory requirements for large systems can be easily seen
by looking at what would be needed for studying the dynamics of the pyrazine
molecule (C4H4N2). This system has 25 degrees of freedom (24 vibrational modes
and a set of electronic states). Although in a study we have performed [14] the
mean grid length for the degrees of freedom was only N ≈ 7.4, the corresponding
direct product grid consists of about 1021 points making the use of the standard
method totally infeasible. Unfortunately, the MCTDH method as presented above,
using a set of SPFs per degree of freedom, is also unable to treat this system on a
workstation: the program requires memory equivalent to approximately 12 wave-
function vectors, double precision complex, and so with only 5 SPFs for each of the
four strongly coupled modes and only 2 SPFs per mode for the remaining degrees
of freedom the calculation would need 54 × 221 × 12 × 16 Bytes ≈ 234 GB.

The memory requirements can however be reduced if SPFs are used that describe
a set of degrees of freedom, rather than just one. The wavefunction ansatz, Eq. (12),
is then rewritten as a multi-configuration over p generalised “particles”,

Ψ(q1, . . . , qp, t) =

ñ1
∑

j1=1

. . .

ñp
∑

jp=1

Aj1...jp
(t)

p
∏

κ=1

ϕ
(κ)
jκ

(qκ, t) , (30)

where qκ = (Qi, Qj , . . .) is the set of coordinates combined together in a single
particle, described by ñκ functions, termed multi-mode SPFs to distinguish them
from the usual single-mode SPFs.

By combining d degrees of freedom together to form a set of p = f/d particles,
the memory requirement reads

memory ∼ pñNd + ñp , (31)

where ñ is the number of multi-mode functions needed for the new particles. The
first and second term of Eq. (31) represent the space taken by the SPFs and the
coefficients, respectively. This equation holds as well for the uncombined case when
setting p = f, d = 1 and ñκ = nκ. For large systems, the second term of Eq. (31)
dominates. Thus if

ñ < nd, (32)
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i.e. the number of multi-mode functions is less for a multi-dimensional particle than
the product of single-mode functions needed for the separate degrees of freedom,
there can be a large saving in memory required.

The inequality (32) will in general be fulfilled. This comes from the fact that
the number of SPFs required is related to the strength of coupling between the
particle and the rest of the system. By combining modes, this coupling is reduced
as the coupling between the combined degrees of freedom is now treated within
the SPFs for the combined mode. For example, consider a system with a set of
coupled modes. The coupling will lead to a wavefunction which is poorly described
by a Hartree product, and many single-mode SPFs would be needed. Going to the
extreme and combining all the degrees of freedom together into one particle, only
one SPF will be required: the standard numerically exact wavefunction.

To summarize, if only single-mode functions are used, i.e. d = 1, the memory
requirement is dominated by the number of A-coefficients, nf . By combining degrees
of freedom together this number can be reduced, but at the expense of longer
product grids required to describe the now multi-mode SPFs. At the extreme of
all degrees of freedom combined together, one arrives at Nf . Between these two
extremes however, there is an optimally small amount of memory required. Similar
considerations apply to the numerical effort. For a fuller discussion see Ref. [6].
Combining modes is not recommended for small systems, unless two degrees of
freedom are very strongly coupled [27]. For large systems however, the effect is
very significant, and enables the 24 nuclear degrees of freedom pyrazine system
to be studied [11, 14, 28]. More recently it was even possible to study a 80 mode
spin-boson model with the MCTDH method [26] using highly combined SPFs.

4 Examples of dynamics

4.1 Spectral Intensities

In this section results are presented from MCTDH wavepacket propagation calcula-
tions [29] on systems involving a conical intersection. The accuracy of the method
is such that all results can be taken as complete quantum dynamical calculations,
while the power is seen in that calculations with up to 24 vibrational modes have
been made, allowing calculations to be made without resorting to drastic approxi-
mations. Photophysical systems from three molecules will be looked at: butatriene,
allene and pyrazine.

The property of interest here is a spectrum, either an absorption spectrum
(pyrazine) or photo-electron spectrum (butatriene and allene). The spectrum σ(ω)
is calculated by Fermi’s golden rule [8]:

σ(ω) = a(ω)
∑

n

∣

∣

∣

〈

Ψf
n

∣

∣

∣
T̂

∣

∣

∣
Ψi

0

〉∣

∣

∣

2

δ
(

ω + Ei
0 − Ef

n

)

. (33)

Here, the final states {|Ψf
n〉} represent eigenstates of the Hamiltonian with energies

Ef
n, and T̂ denotes the appropriate transition operator. The initial state |Ψi

0〉 (with
energy Ei

0) is the electronic and vibrational ground state of the molecule. The pre-
factor a(ω) is proportional to ω for absorption spectra but is taken constant for
ionisation spectra.

The spectrum is conveniently evaluated by Fourier transform of the autocorre-
lation function. To this end one defines the initial state of the propagation by

Ψ(0) = T̂ |Ψi
0〉 . (34)

As we assume a vertical transition (Condon approximation), Ψ(0) is the ground-
state wavepacket placed on an excited or ionic diabatic potential energy surface.
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The autocorrelation function is defined as

C(t) =
〈

Ψ(0)
∣

∣Ψ(t)
〉

=
〈

Ψ∗(t/2)
∣

∣Ψ(t/2)
〉

, (35)

where the second form is only valid for a real initial wavefunction and a symmetric
Hamiltonian. These requirements are fulfilled here and the second form is partic-
ularly useful in conjunction with the MCTDH method as it reduces the required
length of propagation by a factor of two.

The absorption (or ionisation) cross-section can now be expressed as

σ(ω) = a(ω)π−1Re

∫

∞

0

C(t)ei(ω+Ei
0
)t dt . (36)

To compensate for the finite time of the propagation, the autocorrelation must be
multiplied by a function that ensures it goes to zero at the end of the propagation.
If this is not done, spurious structures (known as Gibbs phenomenon) will be seen
in the spectrum. We choose the function

g(t) = cos

(

πt

2T

)

θ

(

1 −
|t|

T

)

(37)

for this task, where T is the length of the propagation, and θ is the Heaviside step
function. In order to compare the calculated spectrum with the experimental one,
it may also be necessary to multiply the autocorrelation function with a damping
factor

f(t) = exp(−t/τ) (38)

where τ is a time constant describing a phenomenological broadening of the spec-
trum due to, e.g. spectral resolution. This is equivalent to convoluting the spectrum
with a Lorentzian function of full width at half-maximum (FWHM) of Γ[eV ] ≈
1.31/τ [fs].

4.2 The butatriene cation X̃ / Ã manifold

The first demonstration [8] of the dramatic effects a conical intersection may have
on the dynamics of a molecular system was given through the computation of the
photo-electron spectrum of butatriene (C4H4). The measured spectrum [30] of
the ground (X̃) and first excited (Ã) electronic states of the cation of this planar
molecule is shown in Fig. 1 (a). Two intense peaks are seen which lie at the energies
expected for the two electronic states. Unexpectedly, between these peaks is also
a structured region which is due to the strong vibronic coupling between these
states. The calculation could reproduce the measured spectrum and in particular
the so called “mystery band”, i. e. the intensity between the two main peaks.
As the “mystery band” is not understandable in an adiabatic picture, this early
study vividly proved the importance of nonadiabatic effects caused by a conical
intersection when computing spectra.

The molecule has D2h symmetry and the states are X̃2B2g and Ã2B3u. Thus
from the symmetry arguments of the vibronic coupling model the linear coupling is
due to modes with Au symmetry, of which butatriene has only one, the ν5 torsional
motion. Four modes of Ag symmetry are present and able to be tuning modes,
but the ν14 central C—C stretch dominates with a coupling constant an order of
magnitude larger than the coupling constants of the other modes.

Using this information a two-dimensional vibronic coupling model Hamiltonian,
Eq. (4), has been set up and parametrised using ab initio calculated data [8, 10].
Fig. 2 shows the adiabatic potential energy surfaces for these states in the space
of the two dominant vibrational modes. These surfaces are the eigenvalues of the

10



diabatic potential matrix, W, in Eq. (3). In Fig. 2 (a) the vibronic coupling has
been set to zero. Two inter-penetrating wells are seen, representing the uncoupled
oscillators, shifted along the symmetric vibrational coordinates. In Fig. 2 (b) the
effect of including the inter-state coupling is obvious: the lower well has broadened
and split into a double well. The upper and lower surfaces also now meet at a point,
the conical intersection.

The spectrum from this two-dimensional model is shown in Fig. 1(b). The
spectrum has been broadened by multiplying the autocorrelation function with Eq.
(38) with a time constant of 35 fs. This is equivalent to convoluting the peaks in
the spectrum with a fairly broad Lorentzian with 40 meV FWHM. The agreement
with the experimental spectrum is very good: proof that the central band is due to
a breakdown of the Born-Oppenheimer approximation by vibronic coupling.

To see the effect of the vibrational modes which have been neglected in this 2-
mode model, an 18-mode model Hamiltonian has also been parametrised including
all the vibrational modes, and coupling coefficients up to second order (quadratic
and bilinear) [12]. The spectrum from this 18-mode model is shown in Fig. 1(c).
Little change is seen, showing that in this case the two modes previously identified
dominate the dynamics. This will be shown not to be the case in other systems.

Although the 2-mode model can reproduce the experiment astonishing well, it
can do so only by using effective coupling constants. To reproduce the experiment,
the coupling constants had to be manually adjusted and differ from the ab-initio
values by factors between 1.3 and 1.5. In contrast, the 18-mode model used the un-
modified ab initio values for all coupling constants except for the linear interstate
coupling constant λ. The latter was increased by 19% with respect to the ab initio
data. (See Ref. [12] for details). The rather large changes required for the param-
eters of the 2-mode model indicate that here the two modes act as effective modes,
partially accounting for the neglected modes through their modified parameters.

As this system can be described by a 2-mode model, we are able to plot the
complete nuclear wavefunction as it evolves in time, and this provides a base against
which other systems can be compared. In Fig. 3 the time-evolution of the system
density is shown in the diabatic picture. The initial wavepacket is the ground state
vibrational eigenfunction, a Gaussian function centred around Q = 0, projected
into the upper state. Initial motion remains in this state, moving across the upper
well until the conical intersection is reached. At this point, which is reached after
only a few femto seconds, density is transferred to the lower state, appearing on two
sides of the cone. The density on both surfaces then travels around the respective
minima, and returns to the intersection after 40 fs, when interstate crossing (in both
directions) occurs once more. In this undamped two-mode system, this pattern is
repeated ad infinitum.

In Fig. 4 the time-evolution of a wavepacket is shown again, but this time in
the adiabatic picture. As the conical intersection lies within the Condon region, the
excitation results in a small occupation of the lower adiabatic state besides mainly
occupying the upper. Following the evolution of the packet on the upper surface,
the cone in Fig. 2(b), the density quickly disappears, and is transferred to the
lower state within 30 fs. The dynamics on the lower surface is more complicated,
but similar to that in the diabatic picture, with the density again flowing around the
minimum, coming away from two sides of the intersection. After 40 fs the density
returns to the intersection point and some re-crossing to the upper state is seen.

4.3 The allene cation Ã / B̃ manifold

Despite its chemical similarity to butatriene, allene (C3H4) has a very different set
of electronic states due to the fact that the ground state equilibrium structure is
D2d, with the CH2 groups perpendicular to one another. The ground state of the
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cation is doubly degenerate, X̃2E, and forms an example of the relatively rare E⊗β
Jahn-Teller interaction [31,32]. An even more interesting system is found in the next
band of the photoelectron spectrum, which is shown in Fig. 5(a). At low energies a
set of ordered peaks are seen, with the structure being washed out at high energies.
This band in fact contains two states, the close lying Ã2E and B̃2B2 states [33].
The Ã2E is again a E ⊗ β Jahn-Teller state, which then further interacts with the
B̃2B2 state via pseudo-Jahn-Teller coupling. This system provides a challenge for
dynamics calculations, as all fifteen vibrational modes couple to first order.

Early calculations focused on the low energy Ã2E band structure [32]. Here the
four doubly degenerate vibrations can be ignored as they do not couple these states.
Of the remaining seven modes, the most strongly coupled of each symmetry type
was taken to provide a 3-mode model with the ν4 (B1), ν7 (B2), and ν2 (A1) modes.
The first two of these provide the Jahn-Teller active modes, coupling the degenerate
electronic states. From inspection of the orbitals, the B1 torsional mode provides
the off-diagonal coupling and B2 the on-diagonal coupling. The A1 mode is also
activated by excitation from the neutral ground state, and appears on the diagonal
of the Hamiltonian. The coupling constant is however the same for both states.
After adjustment of the parameters, this model is able to adequately describe the
experimental spectrum.

A later study [34] added the pseudo-Jahn-Teller coupling to the B̃2B2 state to
this model. This resulted in a 10-mode model, the spectrum of which is shown in
Fig 5(b). The two parts of the spectrum are plotted separately to show that the
peaks at either end can be assigned to each state, with the overlap in the middle
forming a structureless band.

Including all 15 vibrational modes, however, was not possible within the linear
model in a satisfactory manner. In particular, inclusion of the ν3 (A1) mode pro-
vided problems as it is also significantly coupled to the excitation. The problem was
traced to the lack of second-order coupling. On calculating these parameters, it was
found that the ν2 and ν3 modes were strongly coupled, and undergo Duschinsky
rotation. No correction of the first order terms was then required and the resulting
spectrum from the 15-mode model is shown in Fig. 5(c) [35].

How this second order model changes the interpretation of the spectrum arising
from the Jahn-Teller active Ã band is made clear in Fig. 6. In (a) the spectrum
obtained from a 2-mode model with the adjusted parameters of Ref. [32] is shown.
The progression of peaks is in good agreement with the experimental spectrum, and
these can then be assigned to the ν7 and ν2 vibrations, and overtones of these. Fig. 6
(b) shows the same spectrum from the three most important modes from the second
order model. The interpretation here is that the lower peak is due to a combination
of ν2 and ν3 vibrations, while the higher peak is from ν7. This interpretation is
more satisfactory as it fits the ab initio data better. Moreover, the inclusion of ν3

and – to a lesser extent – of all the other neglected modes significantly increases
the density of states leading to an enhanced spectral intensity in the vicinity of 15
eV (see Fig. 5).

In Fig. 7 the time evolution of the diabatic state populations in the Ã/B̃ man-
ifold are plotted. In (a) the results are shown after excitation takes place from
the neutral ground state to the B2 state. The population is seen to rapidly decay,
transferring to the lower energy E state within 20 fs. Weak recurrences are then
seen with a time period of 50 fs.

In Fig. 7(b) the population is shown after excitation to one component of
the E state. Population transfer takes place initially to the B2 state before being
transferred on to the other E component. This process continues in an oscillatory
fashion with a frequency of approximately 25 fs, which corresponds to the frequency
of the ν2 mode. This process is in fact a step wise electron transfer process [36].
The orbitals of the states are plotted in Fig. 7(a), and it can be seen that excitation
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to a component of the E state corresponds to removing an electron from one end
of the molecule. Population transfer corresponds to transferring electron density
from the other end to fill this hole. The B2 state, which has density all along the
conjugated system, thus plays a role in this transfer.

4.4 The pyrazine S1 / S2 manifold

A classic example of the effect of a conical intersection on the photophysics of a
molecule is found in the adsorption spectrum of the pyrazine molecule [37, 38]. In
contrast to the S1 (B3u) band, which has a well defined vibronic structure, the S2

(B2u) state gives rise to a very broad band with little structure. This is reproduced
in Fig. 8(a).

Using the vibronic coupling model, a conical intersection has been identified and
characterized [39]. In the linear model, there is one coupling mode, ν10a with B1g

symmetry, and five possible tuning modes with Ag symmetry. The spectrum from a
linear 4-mode model, which ignores the two weakest coupled tuning modes, is shown
in Fig. 8(b), and is seen to agree very well with the experimental one. To obtain
this spectrum, however, a large phenomenological broadening has been added, with
the spectrum being convoluted with a broad Lorentzian of 37 meV FWHM (τ = 35
fs in Eq. (38)).

In Fig. 8(c) the spectrum is shown from a second order model, which includes
all 24 modes [11]. Here a damping function with a time-constant of only 150 fs
is required for good agreement with the experimental spectrum, equivalent to the
broadening due to the spectrometer. Thus, while the major features of the spectrum
can be accounted for by the 4-mode model, its envelope can only be explained by
including all the modes.

This calculation was a formidable task. Alone setting up the Hamiltonian, which
involved calculating and testing 102 coupling constants, was very time consuming.
24 vibrational modes and 2 coupled electronic states is well beyond the reach of stan-
dard wavepacket methods. This was possible only by using the MCTDH method,
with the refinements of combined modes, and the multi-set formulation. Even so,
2,771,440 configurations were required for good quality results and the propagation
of 150 fs required 650 MB and 485 hours on a Cray T90 vector computer. In con-
trast, the 4-mode model required 20 minutes and 16 MB on an IBM RS/6000 power
2 workstation.

4.5 The pyrazine molecule viewed as a system coupled to a
bath

One question that arises in the pyrazine study is as to whether it is really necessary
to accurately describe the 20 weakly-coupled modes, or could a weakly coupled
bath lead to the same result, namely a seemingly homogeneous broadening of the
4-mode model spectrum. A model in which the 4-mode linear model coupled to a
weak bath has thus also been set up [40]. The bath modes are coupled linearly to
each state, and provide pathways for the dephasing of the wavepacket. We have
studied this model using the MCTDH method [14], with which it was possible to
perform accurate quantum dynamical calculations including up to 20 bath modes.

These calculations demonstrate the scaling of the MCTDH method with system
size. The computer resources required are summarized in Table 1. For comparison
it is indicated how many MCTDH particles (effective degrees of freedom in the
calculation) were used, and how many configurations were required. Both memory
requirements and CPU-time required increase rapidly: not exponentially, however,
but roughly as dimension to the third power. For a 120 fs propagation, this 4-mode
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model, which is slightly different from that used above, required 4MB and 6 min-
utes, while the system coupled to 20 bath modes required 687MB and 3100 minutes
(≈52h). Even so, the 24-mode calculations are easy to make on a normal worksta-
tion. The much longer time required for the 24-mode second-order pyrazine model
calculations shown above is due to the large number of terms in the Hamiltonian
required.

The spectra from the 4-mode model coupled to 0, 5, 10, and 20 bath modes are
plotted in Fig. 9(a)-(d), and the addition of the bath clearly results in the structure
of the spectrum being washed out. The experimental spectrum is, however, not
obtained. The effect of the bath modes is made clear in Fig. 10(a)-(d), in which the
absolute values of the autocorrelation function for the 4-mode system with 0, 5, 10,
and 20 bath modes is plotted. Just the strongest 5 bath modes lead to a significant
damping of the oscillations in the function. This is simply due to the extra volume
of phase-space available in which the wavepacket dissipates, and thus dephases. It
is clear from this plot that the bath model chosen does not lead to a homogenous
broadening of the spectrum, as extra structure is also added (see for example the
first peak). Interestingly, even with the 20-mode bath a definite beat-like structure
is present, and it is as if the bath is filtering the spectrum - while the wavepacket
at most frequencies is dephased, certain frequencies survive [28].

Fig. 11 shows the time-evolution of the population of (a) diabatic and (b)
adiabatic S2 states. In all cases, the population decays sharply over the first 40 fs.
After approximately 80 fs a recurrence occurs, and population is transferred back
from the S1 to the S2 state. The adiabatic populations exhibit a faster, and more
complete, population transfer. The recurrence is also much smaller. In both diabatic
and adiabatic pictures, the presence of the bath increases the rate and amount
of transfer. With 10 bath modes, the population of the adiabatic S2 state goes
very nearly to zero over this time-scale. The 20 bath mode model adiabatic state
populations could not be calculated due to the technical problem of the diabatic -
adiabatic transformation for a system of this size.

We finally mention that the system/bath picture for studying the pyrazine spec-
trum has been adopted by two other publications [41,42]. There, however, the bath
was treated implicitly by dissipative operators of the Lindblad type.

5 Conclusions

A very useful starting point for the study of nonadiabatic processes, which are com-
mon in photochemistry and photophysics, is the vibronic coupling model Hamil-
tonian. The model is based on a Taylor expansion of the potential surfaces in a
diabatic electronic basis, and it is able to correctly describe the dominant feature
resulting from vibronic coupling in polyatomic molecules: a conical intersection.
The importance of such intersections is that they provide efficient non-radiative
pathways for electronic transitions. Not only is the position and shape of the inter-
section described by the model, but it also predicts which nuclear modes of motion
are coupled to the electronic transition which takes place as the system evolves
through the intersection.

The modes involved to first order, i.e. including coupling terms linear in the
nuclear coordinates, are coordinates of the correct symmetry required to couple the
electronic states, as well as the totally symmetric coordinates, which modulate the
energy gap. These are often only a few modes in total, and may provide a reasonable
description of the major physics of the system. Neglecting further the most weakly
coupled modes, this can result in small, 2, 3 or 4 mode models, which can then be
treated using standard wavepacket methods to obtain a full quantum mechanical
solution of the problem.
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To second order, however, all degrees of freedom are involved. Even for small
molecules (5–12 atoms, say) these systems are no longer accessible to standard
quantum dynamics methods. Here, the MCTDH method becomes an essential tool.
MCTDH is an efficient wavepacket propagation method, accurate, yet flexible, and
applicable to a wide range of problems. Its ability to include more degrees of
freedom than conventional wavepacket methods is of particular importance in the
study of the multi-dimensional dynamics associated with non-adiabatic processes.
Using this method we have been able to treat a number of typical non-adiabatic
systems completely up to second order, i.e. including all degrees of freedom.

Our calculations show that these second order terms are important for a quan-
titative description of non-adiabatic systems. This is demonstrated in the pyrazine
S1/S2 system, where a reduced 4-mode model provides a qualitative picture with
the main peaks of the spectrum in the correct places. The addition of second order
terms and all degrees of freedom, results in the correct spectral envelope also being
produced by the model. Also in the allene Ã/B̃ system, the second order terms
are required, not only for the correct description of the Duschinsky rotation in the
excited state, but also for the high spectral density between the two bands. Even
in the butatriene X̃/Ã system, in which second order terms play a minor role in the
description of the spectral band, the inclusion of these terms means that the ab ini-
tio data could be taken with minimal adjustment, whereas a reduced dimensionality
model required significant adjustment of the expansion parameters.

Using the MCTDH method we have thus been able to provide full-dimensionality
calculations on the quantum dynamics of a molecular system passing through a con-
ical intersection. These calculations not only give insight into the factors required
for the description of such systems, but also provide benchmarks for comparison
with results from more approximate methods.

Let us summarize the major points:

• The vibronic coupling Hamiltonian provides a realistic model for accurately
describing the short-time multi-mode dynamics in non-adiabatic systems.

• The computations have shown that a multi-mode treatment is essential for
correctly describing the dynamics in the presence of a conical intersection.

• The advent of MCTDH has made it possible to solve the (second-order) vi-
bronic coupling Hamiltonian of small to medium sized molecules (5 – 12 atoms,
say), including all internal degrees of freedom. In fact, it is the combination
of the vibronic coupling model with MCTDH which is numerically so success-
ful. The vibronic coupling model provides a realistic multi-mode Hamiltonian,
and this Hamiltonian is, from its ansatz, in the product form advantageous
for MCTDH. MCTDH then solves the dynamics problem accurately and effi-
ciently.
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(1999).

[35] S. Mahapatra et al., J. Phys. Chem. A 105, 5567 (2001).

[36] G. Worth and L. Cederbaum, Chem. Phys. Lett. 348, 477 (2001).

[37] I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, Faraday Discuss.
Chem. Soc. 75, 395 (1983).

[38] K. K. Innes, I. G. Ross, and W. R. Moonaw, J. Mol. Spec. 132, 492 (1988).

[39] C. Woywod, W. Domcke, A. L. Sobolewski, and H.-J. Werner, J. Chem. Phys.
100, 1400 (1994).

[40] S. Krempl, M. Winterstetter, H. Plöhn, and W. Domcke, J. Chem. Phys. 100,
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Table and Figure captions

Table 1: Summary of computer resources required for calculations made using the
MCTDH method on a 4-mode model of the S1 and S2 states of the pyrazine molecule
after excitation to the S2 state, and coupled to harmonic oscillator baths of varying
size [14]. The degrees of freedom (no. of bath modes + 4) were combined together
into the no. of particles listed, and the no. of configurations required for converged
calculations are given. The wavepacket was propagated for 120 fs.

bath modes MCTDH configurations Memory CPU time a

particles (MB) (minutes)
0 4 10,575 3.7 6.3

5 4 74,024 48.9 185.0

10 5 142,350 52.5 196.9

20 7 3,759,552 686.5 3095.6

aon an IBM RS/6000 power2 workstation.
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Figure 1: The X̃/Ã spectrum of the butatriene radical cation. (a) Experimental
results from Ref. [30]. (b) 2-mode model from Ref. [10]. (c) 18-mode model from
Ref. [12]. The model spectra are the Fourier Transform of the autocorrelation
function calculated using the MCTDH wavepacket propagation method. A damping
function of τ = 55 fs has been used.
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Figure 2: The potential energy surfaces for the X̃/Ã states of the butatriene radical
cation. (a) in the absence of vibronic coupling. (b) including vibronic coupling. Qu

is the unsymmetric normal mode corresponding to the ν5(au) torsional mode, and
Qg is the symmetric normal mode corresponding to the ν14 central C—C stretching
vibration.
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Figure 3: The time evolution of a wavepacket through the conical intersection
between the X̃/Ã PES of the butatriene radical cation in the diabatic picture. The
location of the conical intersection is indicated by a thick point in the uppermost
plot. Left: first surface, right: second surface
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Figure 4: The time evolution of a wavepacket through the conical intersection
between the X̃/Ã PES of the butatriene radical cation in the adiabatic picture. The
location of the conical intersection is indicated by a thick point in the uppermost
plot. Left: lower surface, right: upper surface
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Figure 5: The Ã/B̃ spectrum of the allene radical cation. (a) Experimental results
from Ref. [33]. (b) 10-mode model from Ref. [34]. (c) 15-mode model from Ref.
[35]. The model spectra are the Fourier Transform of the autocorrelation function
calculated using the MCTDH wavepacket propagation method. A damping function
of τ = 50 fs has been used.
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Figure 6: The spectrum of the Jahn-Teller split ÃE state of the allene radical cation
using different reduced dimensionality models. (a) A linear 2-mode model including
the vibrational modes ν2 and ν7 with parameters adjusted to fit the spectrum. (b)
A 2nd order 3-mode model including the vibrational modes ν2, ν3 and ν7.
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Figure 7: The time evolution of state population transfer in the Ã/B̃ manifold of
the allene radical cation after excitation to (a) the B̃(B2) and (b) the X̃(Ey) diabatic
state.
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Figure 8: The S2 absorption spectrum of the pyrazine molecule (a). Experimental
results from Ref. [37]. (b) 4-mode model from Ref. [39]. (c) 24-mode model from
Ref. [11]. The model spectra are the Fourier Transform of the autocorrelation
function calculated using the MCTDH wavepacket propagation method. A damping
function of τ = 30 fs has been used in (b) and τ = 150 fs in (c).
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Figure 9: The effect of a bath on the spectrum of the 4-mode model for the S1/S2

manifold of the pyrazine molecule after initial excitation to the S2 state. Taken
from Ref. [14]. (a) No bath present. (b) 5 bath modes. (c) 10 bath modes. (d)
20 bath modes. The spectra are calculated from the Fourier Transform of the
autocorrelation function. No phenomenological broadening has been added, but a
cutoff function is used to remove artefacts due to the finite time-length (240 fs) of
the autocorrelation function
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Figure 10: The effect of a bath on the autocorrelation function of the 4-mode model
for the S1/S2 manifold of the pyrazine molecule after initial excitation to the S2

state. Taken from Ref. [14]. (a) No bath present. (b) 5 bath modes. (c) 10 bath
modes. (d) 20 bath modes.
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Figure 11: The effect of a bath on the rate of inter-state crossing in the 4-mode
model of the pyrazine S1/S2 manifold of the pyrazine molecule after initial excitation
to the S2 state. Taken from Ref. [14]. (a) diabatic state population. (b) adiabatic
state population. Full line: 0 bath oscillators. Dashed line: 5 bath oscillators.
Dotted line: 10 bath oscillators. Dash-dot line 20 bath oscillators (diabatic state
only).
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