Übungen zur "Einführung in die Quantentheorie"

WS 08/09 Prof. J. Schirmer

1. De Broglie-Beziehung (2 Punkte)

Für die Interferenz- bzw. Beugungserscheinungen materieller Teilchen gilt die de Broglie-Beziehung $p = h/\lambda$, durch die einem Teilchen mit Impuls p die Wellenlänge λ zugeordnet wird $(h = 6.6262 \cdot 10^{-34} \text{ Js})$.

Wie groß ist die Geschwindigkeit (m/s) und die kinetische Energie (eV) eines Elektrons ($m_e = 9.11 \cdot 10^{-31}$ kg) und eines Neutrons ($m_n = 1.675 \cdot 10^{-27}$ kg) bei einer Wellenlänge von 1 nm.

Wie groß ist (nach obiger Beziehung) die Wellenlänge eines Staubteilchens $(m = 10^{-3} \text{ g})$ mit einer Geschwindigkeit von v = 100 m/s?

2. Orthogonale Funktionen (3 Punkte)

Betrachte die Polynome $p_n(x) = x^n$, n = 0, 1, 2, ... sowie das durch

$$(f,g) = \int_0^1 f(x)g(x) dx$$

definierte Skalarprodukt für Funktionen. Bilde mit Schmidt-Orthogonalisierung aus den $p_n(x)$ durch geeignete Linearkombination drei orthonormierte Polynome $q_n(x)$, n = 0, 1, 2, so dass also $(q_n, q_m) = \delta_{nm}$ gilt. Schreibe $p_2(x)$ als Linearkombination der $q_n(x)$.

3. Eigenwerte und Eigenvektoren (4 Punkte)

Falls die Gleichung

$$M x = \lambda x$$

erfüllt ist, wobei M eine quadratische Matrix, x ein Vektor $\neq 0$ und λ eine Zahl ist, so heißt x Eigenvektor und λ Eigenwert der Matrix M. Bestimme die beiden Eigenwerte und Eigenvektoren der Matrix

$$\boldsymbol{M} = \left(\begin{array}{cc} a & c \\ c & b \end{array}\right)$$

wobei a, b und c reelle Zahlen sind. Berechne die inverse Matrix \mathbf{M}^{-1} .

4. Gaußintegral (2 Punkte)

Berechne das zweifache Integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^2+y^2)} dx \, dy = \left(\int_{-\infty}^{\infty} e^{-ax^2} dx \right)^2$$

durch Transformation auf ebene Polarkoordinaten $x = \varrho \cos \varphi, y = \varrho \sin \varphi$. Hinweis: Das Flächenelement in ebenen Polarkoordinaten ist $\varrho \, d\varrho \, d\varphi$. Berechne $\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx$.

Abgabetermin: Dienstag, 11. 11. 08, 13:00 Uhr