Präsenzübungen

Übungen zur "Einführung in die Quantentheorie"

WS 2008/09 Prof. Dr. J. Schirmer

1. <u>Aufgabe</u> (Rechnen mit komplexen Zahlen) Berechne z_1^2 , z_1z_2 , $z_1z_1^*$, z_2^{-1} und e^{z_2} für $z_1=2+5i$, $z_2=1+2i$. Drücke z_2 in der Form $\rho e^{i\phi}$ aus.

2. Aufgabe

Berechne das Skalarprodukt $(\underline{\mathbf{u}},\underline{\mathbf{v}})$ der Vektoren

$$\underline{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \qquad \underline{v} = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

Wie groß ist der Winkel zwischen \underline{u} und \underline{v} ?

3. Aufgabe

Sind folgende Vektoren \underline{v}_i linear abhängig oder linear unabhängig ?

a)
$$\underline{v}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad \underline{v}_2 = \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \qquad \underline{v}_3 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

b)
$$\underline{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \underline{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} \qquad \underline{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} \qquad \underline{v}_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

c)
$$\underline{v}_{1} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ -4 \\ 2 \end{pmatrix}$$
 $\underline{v}_{2} = \begin{pmatrix} -2 \\ 5 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ $\underline{v}_{3} = \begin{pmatrix} 1 \\ -3 \\ -1 \\ 1 \\ -1 \end{pmatrix}$

4. Aufgabe

Bilde mit dem Schmidtschen Orthogonalisierungsverfahren aus den Vektoren \underline{v}_i , i=1,2,3 drei orthonormierte Basisvektoren \underline{e}_i , i=1,2,3 und drücke \underline{v}_4 als Linearkombination dieser Basisvektoren aus:

$$\underline{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \underline{v}_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \qquad \underline{v}_3 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \qquad \underline{v}_4 = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$

 $\begin{array}{c} 5. \ \underline{\text{Aufgabe}} \\ \overline{\text{Berechne}} \end{array}$

a)
$$\begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 3 & -2 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$