Übungsblatt 11 zur "Theoretischen Chemie 1" Molekülsymmetrie und Gruppentheorie

SS 2014 Prof. H. Köppel Abgabetermin 07.07.2014 (11:00)

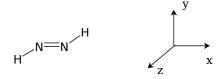
Aufgabe 1

Die drei SALKs der 3 s-Funktionen von Blatt 10, Aufgabe 1 transformieren sich wie die irreduziblen Darstellungen A'_1 und E' der Punktgruppe D_{3h} .

- a) Bei Abknicken an einem der Zentren reduziert sich die Punktgruppe von D_{3h} nach C_{2v} . Welches Zentrum müssen Sie wählen, damit die s_{E_x} und s_{E_y} -Linearkombinationen auch beim Abknicken symmetriegerecht transformieren (Basis von irreduzibler Darstellung bilden)? Gemäß welcher irreduziblen Darstellung von C_{2v} transformieren sie sich?
- b) Zerlegen Sie die irreduzible Darstellung E' von D_{3h} in die irreduziblen Bestandteile von C_{2v} und vergleichen Sie mit dem Ergebnis von a). (2P)

Aufgabe 2

In welche irreduziblen Darstellungen der entsprechenden Punktgruppen können die folgenden direkten Produktdarstellungen zerlegt werden:


- a) $A_1 \otimes A_2$ für D_3
- b) $A_2 \otimes E$ für D_3
- c) $A_{1u} \otimes E_u$ für D_{4h}

Dabei ergibt sich der Charakter $\chi^{\mu\otimes\nu}(R)$ der Produktdarstellung $\Gamma^{\mu}\otimes\Gamma^{\nu}$ zur Symmetrieoperation R durch $\chi^{\mu\otimes\nu}(R)=\chi^{\mu}(R)\chi^{\nu}(R)$. (Hier sind $\chi^{\mu}(R)$ bzw. $\chi^{\nu}(R)$ die Charaktere zu den Darstellungen Γ^{μ} bzw. Γ^{ν} .)

Hinweis: Für nichtentartete irreduzible Darstellungen wurde der Ausdruck für $\chi^{\mu\otimes\nu}(R)$ in der Vorlesung am 2.7. gezeigt, für entartete irreduzible Darstellungen folgt dies am 9.7.

Aufgabe 3

Bestimmen Sie analog zur Vorgehensweise bei NH_3 die Symmetrie der Molekülorbitale des trans-Diimins (C_{2h} -Symmetrie).

Untersuchen Sie hierzu das Transformationsverhalten der 1s-Orbitale der Wasserstoffatome sowie der 2s-, $2p_x$ -, $2p_y$ - und $2p_z$ -Orbitale der Stickstoffatome unter den Symmetriebedingungen von C_{2h} . Gemäß Vorlesung definiert die Gesamtheit dieser Atomorbitale das Transformationsverhalten der daraus konstruierbaren Molekülorbitale. (6P)

Hinweis: Das planare Molekül liegt in der xy-Ebene, die N=N Bindung in der x-Achse.

Aufgabe 4

In der Vorlesung wurde das Transformationsverhalten (Charaktere) der 5 d-Funktionen bei einigen relevanten Drehspiegelungen bestimmt. Benutzen Sie dieses Ergebnis sowie die weiteren von Blatt 10, Aufgabe 2 und zerlegen Sie diese Darstellung in die irreduziblen Bestandteile der Punktgruppen (4P)

- a) T_d
- b) *O*_h

Die Charaktertafeln der Punktgruppen \mathcal{O}_h und T_d finden Sie auf dem Beiblatt zu Kapitel III.2.

Benötigte Charaktertafeln

D_{4h}	E	$2C_4$	C_2	$2C_2'$	2C''_2	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_v$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1
\mathtt{E}_g	2	0	-2	0	0	2	0	-2	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
\mathbb{E}_u	2	0	-2	0	0	-2	0	2	0	0

C_{2v}	Е	C_2	σ_v	σ'_v
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

C_{2h}	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

D_3	E	$2C_3$	$3C_2$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0