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A) VIBRATIONAL STRUCTURE
IN ELECTRONIC SPECTRA

A.1) The Born-Oppenheimer approximation
[1]
Schrödinger equation for coupled electronic and nuclear
motions:

H = Hel + TK

Hel = Tel + U (x,Q)

Helφn(x,Q) = Vn(Q)φn(x,Q) (assume solved)

HΨ(x,Q) = EΨ(x,Q)

Ψ(x, Q) =
∑

m

χm(Q)φm(x, Q)

[TK + Vn(Q) − E]χn(Q) =
∑

m Λnmχm(Q)

Λnm =
∑ ~2

Mi

∫
d3Nxφ∗

n(
∂φm
∂Qi

) ∂
∂Qi

−
∫

d3Nxφ∗
n(TKφm)

x and Q denote the sets of electronic and nuclear coor-
dinates, respectively. Correspondingly φ and χ stands
for the electronic and nuclear wave functions.
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Derivation of the coupled equations

For simplicity, put

TK = − ~2

2M

∂2

∂Q2

∑

(Tel + U + TK) χm(Q)φm(x, Q) =
∑

Eχm(Q)φm(x,Q)

∑

[Vm(Q) + TK] χm(Q)φm(x,Q) =
∑

Eχm(Q)φm(x,Q)

∑

{[Vm(Q) − E + TK] χm(Q)}φm(x,Q) =

∑

m

~2

M

(
∂χm

∂Q

)(
∂φm

∂Q

)

−
∑

m

χm (TKφm)

∫

φ∗
nd

3Nx : (Vn + TK − E) χn =

=
∑

m

~2

M

∫

φ∗
n

∂φm

∂Q

∂χm

∂Q
d3Nx

−
∑

m

χm

∫

φ∗
n (TKφm) d3Nx

=
∑

m

Λnmχm .
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So far still formally exact. Approximation: put

Λnm = 0

=⇒ [TK + Vn(Q) − E]χn(Q) = 0 .

It follows:

• (Electronic) eigenvalues, Vn(Q), of a given
state correspond to the potential energy hy-
persurface for the nuclear motion.

• Total molecular wavefunction becomes a prod-
uct of a nuclear and electronic wave function:

Ψ(x,Q) = χn(Q)φn(x,Q)

• Valid, e.g., when φn(x,Q) ≈ φn(x − Q).

• BO approximation!

Electrons follow the nuclear motion instantaneously (adi-
abatic), due to the large ratio between nuclear and elec-
tronic masses (i.e. the large effective mass of a nucleus
compared to that of an electron M ≫ mel).
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Simple estimates for hierarchy of energy scales

Eel ∼< Tel >∼ ~2κ2
el

m
∼ ~2

md2

with d ≈ molecular dimension.

Evib ∼ ~

√

f

M
mit f ∼ ∂2Eel

∂R2
∼ Eel

d2

=⇒ Evib ∼ ~2

√

1

Mmd4
=

√
m

M

~2

md2
=

√
m

M
Eel

Erot ∼ < Trot > ∼ ~2

I
=

~2

Md2
=

m

M
Eel

=⇒ Erot ≪ Evib ≪ Eel

Larger electronic energy scale, shorter time scale of the
oscillations (for non-stationary states).

⇓
Similar to classical picture; fast readjustment of elec-
trons to nuclear changes.
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Analogous for relative nuclear displacements

< R2 >∼ ~
Mω

< Q2 >∼ ~2

MEvib

(
~√
fM

)

κ =

√
< R2 >

d
∼ ~

d
√

M~

4
√

Mmd4 = 4
√

m/M

... and for nonadiabatic coupling elements

< Λnm > ∼ ~2

M
<

∂2

∂R2
>el +

~2

M
<

∂

∂R
>el<

∂

∂R
>vib

∼ ~2

M
k2

el +
~2

M
kel

√

Mw

~
<

∂

∂Q
>vib

∼ ~2

Md2
+

~2

Md

√√
fM

~

∼ m

M
Eel +

~2

M
3
4d

4

√

~2

md2~2d2

∼ m

M
Eel +

~2

M
3
4d2m

1
4

m
3
4

m
3
4

∼ m

M
Eel +

(m

M

)3
4
Eel

Erot ≈ Term(∂2/∂R2) ≪ Term(∂/∂R) ≪ Evib

κ4 κ4 κ3 κ2 × Eel
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Hellmann-Feynman relation

Re-writing the non-adiabatic (derivative) coupling terms:

∂Hel

∂Qi
φn(x, Q) + Hel

∂φn(x, Q)

∂Qi
=

∂Vn(Q)

∂Qi
φn(x,Q) + Vn(Q)

∂φn(x,Q)

∂Qi

Multiplying from the left by φ∗
m and integrating over

the electronic coordinates, x, leads to:

〈φm(Q)|∂Hel

∂Qi
|φn(Q)〉x + Vm(Q)〈φm(Q)|∂φn(Q)

∂Qi
〉x =

= 〈φm(Q)|∂Vn(Q)

∂Qi
|φn(Q)〉x + Vn(Q)〈φm(Q)|∂φn(Q)

∂Qi
〉x

n = m : 〈φn(Q)|∂Hel

∂Qi
|φn(Q)〉x =

∂Vn(Q)

∂Qi

n 6= m:

∫

d3Nxφ∗
m

(
∂φn

∂Qi

)

=

∫
d3Nxφm(x, Q)

(
∂Hel
∂Qi

)

φn(x,Q)

Vn(Q) − Vm(Q)

In the vicinity of a degeneracy the derivative couplings
can diverge and the adiabatic approximation is expected
to break down!
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Harmonic oscillator and its eigenfunctions

The Hamiltonian of a quantum harmonic oscillator is
given by

Ĥ = −~2

2µ

∂2

∂r2
+

1

2
f r2

Using the relationship between dimensioned (r) and di-
mensionless coordinates (Q),

Q =
√

µ ω
~ r; ω =

√
f
µ

we get

Ĥ = ~ ω
2

(

− ∂2

∂Q2 + Q2
)

The eigenfunctions of the harmonic oscillator involve
the well-known Hermite polynomials and read as

Ψn(Q) = {√π n! 2n}−
1
2 e−

Q2

2 Hn(Q)

The first Hermite polynomials, Hn(Q), are

H0(Q) = 1, H1(Q) = 2 Q, H2(Q) = 4 Q2 − 2.

One can identify the meaning of the Q coordinates: the
displacement is measured in units of the so-called zero-
point amplitude, i.e.,

Ψ0(1) = e−
1
2 Ψ0(0)
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A.2) The Franck-Condon principle

Consider the transition between different electronic
states, particularly, a transition from the electronic ground
state , GS, to one of the excited states, ES (optical, UV-
absorption).

The transition probability follows from first order time-
dependent perturbation theory;

I(ωph) ∼
∑

F

|〈ΨF |H1|ΨI〉2δ(EF − EI − ~ωph)

where ΨI and ΨF are eigenfunctions of H0 (isolated
molecule) and correspond to the initial and final states
during a transition.
Interaction between the molecule and radiation field in
the dipole approximation:

H1(t) ∼ −
N∑

j=1

e(~ε.~rj)E0(t)

In contrast to the IR-spectrum the summation index, j,
runs only over electronic coordinates (orthogonality of
the electronic wave functions).
Within the Born-Oppenheimer approximation the wave
functions are written in a product form;

ΨI = φiχυ; ΨF = φf χ̃υ
′
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v=0
1

2

3

1
2

3
4

χ

χ

,

,2 2E

E0 0

∼∼

v’=0

with

(Tk + Vi − Eυ)χυ = 0

(Tk + Vf − Ẽυ
′)χ̃υ

′ = 0

Note that χυ and χ̃υ
′ are vibrational functions of differ-

ent potential energy curves.
Evaluate the matrix elements in the Born-Oppenheimer

approximation;
∫

Ψ∗
F (x, Q)H1ΨI(x,Q)d3NxdQ =

=

∫

χ̃∗
υ
′(Q)

∫

φ∗
f(x,Q)H1φi(x,Q)d3Nx

︸ ︷︷ ︸

χυ(Q)dQ

The integral Tfi(Q) =
∫

φ∗
f(x,Q)H1φi(x,Q)dx is called

the electronic transition moment or dipole-transition-
(matrix) element. It replaces the dipole moments (=di-
agonal matrix elements) evaluated in IR-spectroscopy.
Therefore, one can write the matrix elements as follows:
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∫

Ψ∗
FH1ΨIdxdQ =

∫

χ̃∗
υ
′(Q)Tfi(Q)χυ(Q)dQ

The transition moment depends on Q only through the
electronic wave function. If the transition moment de-
pends sufficiently weakly on Q, one can write;

Tfi(Q) ≈ Tfi(Q = 0)

with an appropriate reference geometry, Q = 0. It is
natural to choose (mostly) the reference geometry to be
the equilibrium geometry of the molecule in the initial
state:
Condon approximation or Franck-Condon principle.

In the Condon approximation:
∫

Ψ∗
FH1ΨIdxdQ = Tfi(Q = 0)Sυ

′
υ

with S
υ
′
υ

=
∫

χ̃∗
υ
′(Q)χυ(Q)dQ.

Sυ
′
υ and its square are Franck-Condon overlap integral

and Franck-Condon factor, respectively (see also [2]).
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I ( w )

The spectrum follows immediately:

I(ωph) ∼ |Tfi(Q = 0)|2∑υ
′ |Sυ

′
υ|2δ(Ẽυ

′ − Eυ − ~ωph)

The relative intensities are determined only through vi-
brational wave functions, electronic wave functions play
almost no role.

Principle of vertical transitions !
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A.3) Shifted harmonic oscillator

Important special case: harmonic potentials with the
same curvature (force constant).

Define Q as the dimensionless normal coordinate of ini-
tial state (mostly, electronic ground state).

Vi(Q) = ω
2Q

2 (~ = 1)

With the same curvature (force constant) for Vf(Q), we
have

Vf(Q) = Vf(Q = 0) +
ω

2
Q2 + kQ

with k =
(

∂Vf

∂Q

)

Q=0
; Vf(Q = 0) ≡ V0

The linear coupling leads to a shift in the equilibrium
geometry and a stabilization energy along the distortion
(see next Fig).
The oscillator can be easily solved by adding the quadratic
terms (completing the square);

Vf(Q) = V0 +
ω

2

(

Q +
k

ω

)2

− k
2

2ω

= V0 − k
2

2ω + ω
2Q

′2

↑ ↑
Stokes-shift ; New normal coordinate
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VfVf

V

V i

f

2w
=

2

=
w

∆

V

Q

fV V0(0) =

κ k

κ

k

k

Note: ∂
∂Q = ∂

∂Q
′ =⇒ same eigenfunctions =⇒

S
υ
′
υ

= N
υ
′Nυ

∫ ∞

−∞
dQH

υ
′

(

Q +
k

ω

)

Hυ(Q)e−
Q2

2 e−
1
2(Q+k/ω)2

We restrict ourselves to the special case where υ = 0.
By substituting Q

′
= Q + κ and κ = k/ω, one can

easily obtain:

Sυ
′
0 = Nυ

′N0

∫ ∞

−∞
dQ

′
Hυ

′

(

Q
′
)

e−Q
′2
eκQ

′−1
2κ2

There are several possibilities to evaluate these inte-
grals, such as the method of generating functions (see
exercises) or operator algebra (occupation number rep-
resentation of harmonic oscillator).
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Summary of the shifted harmonic oscillator

P (Eph) =
∑

υ

aυ

υ!
e−aδ(Eph − V0 + aω − υω)

where a = κ2/2 = k2/(2ω2)

Sum rule:

∑

υ

|Sυ0|2 = e−a
∑

υ

aυ

υ!
= e−ae+a = 1

Mean quantum number:

ῡ =
∑

υ

aυ υ

υ!
e−a = a

∑

υ>0

aυ−1

(υ − 1)!
e−a = a

The parameter a is a measure of the vibrational excita-
tion in an electronic transition.
aω is the mean vibrational energy during the transition
( = Stokes-shift k2/(2ω))

For a → 0 we have |Sυ0|2 −→ δυ0, which means no
excitation (potential curves Vi and Vf are identical).
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Intensity ratio: |Sυ+1,0/Sυ,0|2 = a
υ+1

Mean energy (center of gravity or centroid):

Ē =
∫

EP (E)dE

=
∑

(V0 − aω + υω)aυ

υ!
e−a

= V0 − aω + ω
∑

υ υaυ

υ!
e−a

= V0 − aω + ω
∑

υ
aυ

(υ−1)!e
−a = V0

Energetic width:

(∆E)2 = (E − Ē)2 = E2 − Ē2

=
∑

υ(υ − a)2ω2aυ

υ!e
−a

=
∑{υ(υ − 1) + υ − 2aυ + a2}ω2aυ

υ!
e−a

=
∑

ω2 aυ

(υ−2)!
e−a + (a − 2a2 + a2)ω2

= (a2 + a − a2)ω2 = aω2 = k2

2

=⇒ ∆E ∼ k√
2

Width is defined through the gradient of the final state,Vf(Q),
at Q = 0 (because of the finite extension of χ0(Q)).
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A.4) The frequency-modified harmonic oscil-
lator
Non-totally symmetric modes :

∂Vf (Q)

∂Q
= 0

Next order in expansion: Vf(Q) = Vf(0) + γ
2
Q2 + ω

2
Q2

New frequency : ωf ≡ ω̂ =
√

ω(ω + γ)
New dimensionless normal coordinate:

Q̂ =
√

ω̂
ω
Q = 4

√
ω+γ
ω

Q

=⇒ Hf = −ω
2

∂2

∂Q2 + ω+γ
2

Q2 ≡ −ω̂
2

∂2

∂Q̂2 + ω̂
2
Q̂2

One can find the Franck-Condon factors as follows:

|S0,2υ+1|2 = 0

|S0,2υ|2 = 2
√

ωω̂
ω+ω̂

(
ω̂−ω
ω̂+ω

)2υ (2υ−1)!!
2υυ!

Example:

ω̂ = 2ω =⇒

|S0,0|2 =
√

8
3
≈ 0.94, |S0,2|2 ≈ 0.05, |S0,2|2 ≈ 0.004

Only weak vibrational excitation !
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B) THE JAHN-TELLER EFFECT AND
VIBRONIC INTERACTIONS

B.1) The theorem of Jahn and Teller

Theorem (1937):
’Any molecule in a spatially degenerate electronic
state is unstable unless the degeneracy is accidental
or the molecule is linear.’

Or alternatively:
’Any non-linear molecule undergoes distortion when
its electronic state is degenerate by symmetry.’

Remarks:
-Spin degeneracy is not considered.
-When the degeneracy comes from an orbital that con-
tributes weakly to the bond, the distortion will be small.

In other words:
’At the equilibrium geometry of a non-linear molecule
the electronic state cannot be degenerate by symme-
try.’

Formal:
The instability comes from linear terms of the potential
energy matrix, which are missing in the case of linear
molecules.
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Proof:
We will point out here just the basic ideas.

Principle: (Group theory)

Let Eo be the energy of the equilibrium geometry in a
degenerate electronic state, i.e., the geometry is opti-
mized with respect to the totally symmetric modes:

Hoφ
o
l = Eoφ

o
l (e.g. 1 ≤ l ≤ 3)

where Ho and φo
l are the Hamiltonian and the wavefunc-

tion of the system, respectively, in the high-symmetry
situation.

Let us consider a small displacement, δQr, along the
non-totally symmetric modes:

H(δQr) = Ho + Hr · δQr + O(δQ2
r)

E(δQr) = Eo + Er · δQr + O(δQ2
r)

with

det |〈φo
l |Hr|φo

m〉 − Erδlm| = 0

that is, Er are the eigenvalues of this secular equation.
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The energy correction is negative for δQr −→ −δQr.
The first-order contribution yields unstability. It van-
ishes when all the matrix elements are zero. Using
the symmetry selection rules, the matrix elements are,
therefore, non zero when:

(Γ(φo) × Γ(φo))sym × Γ(Qr) ⊃ ΓA1

where sym refers to the symmetrized direct product.

Group theory shows that the symmetrized direct prod-
uct, (Γ(φo)×Γ(φo))sym, also contains non-totally symmetric
representations.

Jahn and Teller (1937):

In all molecular point groups, except for C∞v and
D∞h, there are non-totally symmetric modes that are
contained in the symmetrized direct product of any de-
generate irreducible representation.

Proof: Enumerative!
One considers the minimum number of equivalent points
for all topologically distinct realisations of a point group
and its irreducible representations.
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Examples:

1. Linear Molecules, C∞v and D∞h:

For all the degenerate irreducible representations,
E1(= Π), E2(= ∆), · · · , Ek,

(Ek)
2 = A1 + E2k

Let us consider the irreducible representation correspond-
ing to the bending mode:

Γ(Q2) = E1(= Π)

so that (Ek)
2 × Γ(Q2) + ΓA1 =⇒

no linear coupling terms are possible.

2. Planar X4-systems, D4h:

Two doubly-degenerate irreducible representations,

(Eg)
2 = (Eu)

2 = A1g + B1g + B2g

The following vibrational mode transforms like B2g.

B2gΓ
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3. Planar X3-systems, D3h:

Two doubly-degenerate irreducible representations

(E ′)2sym = (E ′′)2 = A′ + E ′

The following normal mode transforms like E ′.

Γ

Qy Qx

E’,

Comments:
Most of the Jahn-Teller active modes are degenerate,
cf., D3h. The tetragonal point groups are, however,
exceptions: C4, C4v, C4h, D4, D4h, S4, D2d. For them,
there are non-degenerate modes that are Jahn-Teller
active. The latter is due to the symmetry selection rules
and not to the lack of degenerate normal modes.
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B.2) The E ⊗ e Jahn-Teller effect

a) The E ⊗ e Hamiltonian:
As a starting point, the common case will be consid-
ered, i.e., a three-fold axis in a C3v or a D3h point group.
The simplest system to think of would be a triatomic
molecule in an E electronic state, whose atoms are lo-
cated at the corners of an equilateral triangle. For ex-
ample, the H3, Li3 or Na3 molecule.

y

x

In such a molecule, as also in NH3 or BF3, there is
a degenerate vibrational normal mode of E symmetry.
The components transform like (x, y) and they will be
hereafter denoted as (Qx, Qy).
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In this situation it is convenient to use polar coordinates
in the x,y plane.

Qx = ρ cos χ, Qy = ρ sin χ

Next, we are going to define the complex coordinates,
Q+ and Q−,

Q+ = Qx + iQy = ρ (cos χ + i sin χ) = ρ eiχ

Q− = Qx − iQy = ρ (cos χ − i sin χ) = ρ e−iχ

Let us now consider the effect of the C3 operation on
the coordinates, that is, a 2π

3 rotation.

C3 Qx = cos (
2π

3
) Qx − sin (

2π

3
) Qy

C3 Qy = sin (
2π

3
) Qx + cos (

2π

3
) Qy

so that

C3 Q+ = cos (
2π

3
) Qx − sin (

2π

3
) Qy

= i sin (
2π

3
) Qx + i cos (

2π

3
) Qy

= e(+2πi
3 ) Qx + i e(+2πi

3 ) Qy

= e(+2πi
3 ) Q+

and also,

C3 Q− = e(−2πi
3 ) Q−
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A (2π/3) rotation yields the multiplication of the com-

plex coordinates with a complex phase factor e(±2πi
3 ).

We can express the transformation in a matrix form as

C3

(
Q+

Q−

)

=

(

e
+2πi

3 0

0 e
−2πi

3

)(
Q+

Q−

)

The components of the electronic states transform also
like (x,y) and will be denoted here as Φx, Φy. As done
for the nuclear coordinates, we define also a set of com-
plex functions:

Φ+ =
1√
2

(Φx + iΦy), Φ− =
1√
2

(Φx − iΦy)

(The factor 1/
√

2 comes from the fact that both sets,
Φx, Φy and Φ+, Φ−, must be normalized.)

A rotation by 2π/3 yields,

C3Φ± = e±2π/3 Φ±

Q± and Φ± are the most suitable coordinates and func-
tions to use, since they are adapted to the symmetry of
the problem.
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Let us consider now the matrix elements of the electronic
Hamiltonian in the Φ± basis set up to second order in
the coordinates Q±. We have:

∫

dx Φ∗o
+ Hel Φo

+ = W (0) + W
(1)
+ Q+ + W

(1)
− Q−

+
1

2
W

(2)
++Q+Q+ +

1

2
W

(2)
−−Q−Q− + W

(2)
+−Q+Q−

By applying C3 to this equation, the left side is multi-
plied by

(

e+2πi/3
)∗

e+2πi/3 = 1

since Hel is invariant. Thus the left side is also invariant.
On the right side, all the W ′s, for which the combination
of the Q′s is not invariant, have to vanish, i.e.,

W
(1)
+ = W

(1)
− = W

(2)
++ = W

(2)
−− = 0

So that:
∫

dx Φ∗o
+ Hel Φo

+ = W (0) + W
(2)
+−Q+Q−

and also
∫

dx Φ∗o
− Hel Φo

− = W (0) + W
(2)
+−Q+Q−

with the same coefficients.
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The off-diagonal matrix elements are:
∫

dx Φ∗o
+ Hel Φo

− = V (0) + V
(1)
+ Q+ + V

(1)
− Q− +

1

2
V

(2)
++Q+Q+

+
1

2
V

(2)
−−Q−Q− + V

(2)
+−Q+Q−

Applying C3 to the l.h.s. yields a factor

e−2πi/3e−2πi/3 = e−4πi/3 = e+2πi/3,

so that we finally get:

V (0) = V
(1)
− = V

(2)
++ = V

(2)
+− = 0

i.e.,
∫

dx Φ∗o
+ Hel Φo

− = V
(1)
+ +

1

2
V

(2)
−−Q−Q−

We have thus determined the nonvanishing coefficients.
Abbreviations:

W (0) = 0 (zero of energy)

W
(2)
+− = ω

2

V
(1)
+ = k

V
(2)
−− = g

Finally, the electronic Hamiltonian in the Φ± basis set
is:

Hel = ω
2 Q+Q− 1 +

(
0 kQ+ + 1

2
gQ2

−
kQ− + 1

2gQ2
+ 0

)

or with Q+ = ρ eiχ, Q− = ρ e−iχ
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Hel = ω
2
ρ2 1 +

(
0 kρeiχ + 1

2gρ2e−2iχ

kρe−iχ + 1
2
gρ2e2iχ 0

)

This is a Diabatic Representation, where the electronic
Hamiltonian matrix, Hel is not diagonal.

The total E ⊗ e-JT Hamiltonian is formed by adding
the kinetic operator for the nuclear motion:

Tk = −ω

2

(
∂2

∂Q2
x

+
∂2

∂Q2
y

)

In polar coordinates (ρ, χ) Tk reads as:

Tk = − ω
2ρ2

(

ρ ∂
∂ρ

ρ ∂
∂ρ

+ ∂2

∂χ2

)

H =
(
Tk + ω

2
ρ2
)

1 +

(
0 kρeiχ + 1

2
gρ2e−2iχ

kρe−iχ + 1
2
gρ2e2iχ 0

)

The term kρeiχ is called linear JT-coupling.
The term 1

2gρ2e−2iχ is called quadratic JT-coupling.
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b) The adiabatic potential energy surfaces
and wavefunctions:

The JT-Hamiltonian in the form specified above is the
easiest one from symmetry considerations and most suitable
for the calculation of spectra, but is not, however, too
descriptive. Therefore, for a better understanding of the
problems, we will consider also the adiabatic representation.

The adiabatic potential energy surfaces are obtained as
follows

det

(
−λ x

x∗ −λ

)

= 0, x = kρeiχ +
1

2
gρ2e−2iχ

and:
λ2 − |x|2 = 0 −→ λ1,2 = ±|x|

Then,

V1,2 =
ω

2
ρ2 ± λ1,2 =

ω

2
ρ2 ± |kρeiχ +

1

2
gρ2e−2iχ|

V1,2 = ω
2ρ

2 ±
∣
∣kρ + 1

2gρ2e−3iχ
∣
∣
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In most of the situations the quadratic coupling terms
are smaller than the linear ones. If we set g = 0, we ob-
tain the potential energy surfaces of the linear JT-effect:

V1,2 = ω
2
ρ2 ± kρ

Within this approach the potential energy surface shows
a rotational symmetry, i.e, it is χ-independent. This
surface is the prototype of a so-called conical intersection
of potential energy surfaces.

Including the quadratic coupling term we have:

V1,2 = ω
2ρ

2 ±
√

k2ρ2 + 1
4g

2ρ4 + gkρ3cos(3χ)

For small displacements, the ρ4 term can be dropped
out:

V1,2 = ω
2 ρ2 ± k ρ

√
1 + g

kρ cos (3χ)

By expansion of the square root:

V1,2 = ω
2 ρ2 ± k ρ + 1

2 g ρ2 cos(3χ)

In the linear + quadratic JT-effect, the potential energy
surfaces have a threefold symmetry. The lower surface
has three minima and three saddle points.
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Coordinates and JT surfaces for X3 molecules
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For the calculation of the adiabatic wavefunctions and
the non-adiabatic coupling terms, we are going to con-
sider just the linear JT-effect. We have

S+

(
0 kρeiχ

kρe−iχ 0

)

S =

(
λ1 0

0 λ2

)

with λ1 = kρ and λ2 = −kρ.

Obtaining the eigenvectors:

(a) λ1:
(

−kρ kρeiχ

kρe−iχ −kρ

)(
s11

s21

)

= 0

−s11 + eiχs21 = 0

s21 = e−iχs11

With s11 = 1√
2

eiχ/2 −→ s21 = 1√
2

e−iχ/2.

(b) λ2:
(

+kρ kρeiχ

kρe−iχ +kρ

)(
s12

s22

)

= 0

e−iχs12 + s22 = 0

and s22 = 1√
2

e−iχ/2; s12 = − 1√
2

e+iχ/2

we get,

S = 1√
2

(
eiχ/2 −eiχ/2

e−iχ/2 e−iχ/2

)
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The adiabatic wavefunctions, Φad
1,2, are obtained from

the diabatic ones, Φ±, as,

(
Φad

1

Φad
2

)

= S+

(
Φ+

Φ−

)

S+ =
1√
2

(
e−iχ/2 eiχ/2

−e−iχ/2 eiχ/2

)

i.e.,

Φad
1 =

1√
2

(

e−iχ/2Φ+ + eiχ/2Φ−
)

Φad
2 =

1√
2

(

−e−iχ/2Φ+ + eiχ/2Φ−
)

Using Φ+ = 1√
2
(Φx + i Φy), Φ− = 1√

2
(Φx − i Φy), we

get:

Φad
1 = cos (

χ

2
)Φx + sin (

χ

2
)Φy

i Φad
2 = − sin (

χ

2
)Φx + cos (

χ

2
)Φy

It is also interesting to analyze the dependence of the
adiabatic wavefunctions on χ/2. When following a 2π-loop
around ρ = 0, the adiabatic wavefunctions do not trans-
form into themselves, but:

Φad
1 (2π) = −Φad

1 (0)

Φad
2 (2π) = −Φad

2 (0)

They transform again into themselves after a 4π-loop.
This is the general behaviour for two-dimensional conical
intersections.



42

Finally, we are going to calculate the non-adiabatic
coupling operator Λ. Since S depends only on the χ
angle, we have to consider just the term − ω

2ρ2∂
2/∂χ2:

Tk

(
Φad

1

Φad
2

)

= − ω

2ρ2

(

−1
4 i δ

δχ

i δ
δχ

−1
4

)(
Φad

1

Φad
2

)

+

(
Φad

1

Φad
2

)

Tk

The non-adiabatic coupling operator Λ reads:

Λ = + ω
2ρ2

(

−1
4 i δ

δχ

i δ
δχ −1

4

)

Note that Λ diverges at ρ = 0.

The BO-approximation breaks down in the JT case.
Therefore, the diabatic representation is more suitable.
The nuclear motion on the adiabatic surfaces V1 and V2

is strongly coupled. As a consequence, the vibrational
energy levels on the adiabatic energy surfaces have no
longer physical meaning.
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Vibronic Line Spectrum for an A −→ E transition

with strong coupling.
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B.3) A simple model of vibronic coupling

Use a diabatic electronic basis and expand coupling
terms:

H = TN1 + W

Wnn(Q) = V0(Q) + En +
∑

i k
(n)
i Qi +

∑

i,j γ
(n)
ij QiQj + · · ·

Wnn′(Q) =
∑

i λ
(nn′)
i Qi + · · · (n 6= n′)

with Qi: normal coordinates of V0(Q),

and, for instance, k
(n)
i = (∂Vn/∂Qi)Q=0.

k
(n)
i is the gradient of the excited potential energy sur-

face at the Franck-Condon zone centre.

Analogously for the other coupling constants.

The coupling constants can therefore be determined
from ab initio calculations (few points are needed).

Selection rule for λ
(nn′)
i

Γn × ΓQ × Γn′ ⊃ ΓA
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a) Hamiltonian for a two-state case:

H =

(

−1

2

∑

ωi
∂2

∂Q2
i

+
1

2

∑

ωiQ
2
i

)

1 +
(

Eg +
∑

k
(g)
j Qj

∑
λlQl

∑
λlQl Eu +

∑
k

(u)
j Qj

)

Electronic states with different symmetries → Modes l
and j are different.

For a first insight into the phenomena, the g mode will
be dropped and only one term will be considered in the
off-diagonal element:

H = (−ωu

2

∂2

∂Q2
u

+
ωu

2
Q2

u)1 +

(
Eg λQu

λQu Eu

)

This is almost the simplest case that one can think of,
but it still shows many of the representative effects of
vibronic interactions.
In the diabatic representation H is not too descriptive.
Let us have a look then at the adiabatic potential en-
ergy curves:

E =
Eg + Eu

2
; ∆E =

Eg − Eu

2

=⇒ V± =
ωu

2
Q2

u + E ±
√

∆E2 + λ2Q2
u
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If Qu = 0 then V± = E ± ∆E =

{
Eg

Eu
,

i.e., the diabatic and the adiabatic potential energy
curves are identical (how it should be). Qu 6= 0 yields
repulsion between the potential energy curves. A qual-
itative picture is displayed next,

Q

λ=0

V

u

λ

λ

The upper potential energy curves, V+, are always steeper
due to the interaction.
For V− a double minimun can be obtained for strong
couplings: Symmetry breaking.
Repulsion of potential energy curves and symmetry low-
ering (linear → non-linear; planar → non-planar) are
important signs of vibronic interaction with other elec-
tronic states.
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Calculation of the curvature using Taylor expansion:

V± = E +
ωu

2
Q2

u ± ∆E

(

1 +
1

2

λ2Q2
u

△E2
+ ...

)

= E +
ωu

2
Q2

u ± ∆E ± λ2Q2
u

2∆E2

= E ± ∆E +
1

2

(

ωu ±
λ2

∆E

)

Q2
u

=⇒ ω±
u = ωu ± λ2

∆E

The change in the curvature is symmetric, as the re-
pulsion of the potential energy curves. The expression
for ω−

u holds only for positive frequences. This yields
a critical coupling strength, λc, for obtaining a double
minimum:

λ2
c = ∆E · ωu

If λ > λc, Qu = 0 represents a local maximum. The
minima are the non-trivial solutions of the equation:

0 =
∂V−
∂Qu

= ωu Qu −
λ2Qu

√

∆E2 + λ2Q2
u

=⇒ Qo
u = ±

√

λ2

ω2
u

− ∆E2

λ2
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The solutions are real and 6= 0 if λ > λc. The stabiliza-
tion energy, Es, represents the lowering of the minimum
of the lower potential energy curve relative to the min-
imum in the absence of vibronic coupling (λ = 0) due
to an asymmetric distortion:

Es = V−(0) − V−(Qo
u) =

ωu

2

(
λ

ωu
− ∆E

λ

)2

This expression is formally always defined, but holds
only for λ > λc.

Beside the potential energy curves, we are interested
also in the non-adiabatic couplings, given by the deriva-
tive of the rotation angle, α′:

α(Qu) =
1

2
arctan

2 W12

W11 − W22

Substituting and differentiating:

α(Qu) =
1

2
arctan

λQu

∆E

=⇒ α′ =
1

2
· 1

1 + λ2Q2
u

∆E2

· λ

∆E
=

λ∆E/2

∆E2 + λ2Q2
u
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One obtains a Lorentzian curve with a width and a
height given by hwhm = ∆E

λ and α′(0) = λ
2∆E , respec-

tively.

The area under the α′(Qu) curve has to be π
2 and, there-

fore, the limits for α(±∞) are ±π
4
.

Qu

(Q  )uα

π
4

π
4

λ / 2 ∆ Ε

(Q  )uα’

∆Ε
λ

Q u

One can see from this expression that for fixed values
of λ and ωu, the non-adiabatic effects increase with de-
creasing ∆E.

Comparison of criteria:
Double minimum: λ2 > ωu · ∆E
Non-adiabatic effects: λ > ∆E, ωu ≥ ∆E
For ωu < ∆E, the criterium for the double minimum is
easier to fulfill than for non-adiabatic effects.
−→ different validity of the diagonal approximation in
the adiabatic and the diabatic basis!

ωu ∆E < λ2 < ∆E2

Double minimum / adiabatic app. valid
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B.4) Conical intersection and vibronic dynamics

in the ethene radical cation, C2H
+
4

Schematic representation of the relevant vibrational normal

modes and molecular orbitals of C2H
+
4

(Mode 1-3: totally symmetric modes, Mode 4: Torsion)
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Wavepackets dynamics for C2H
+
4 (X̃,Ã)
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Short-time dynamics for C2H
+
4 (X̃,Ã)

Coherent motion for Q1 and Q2
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Long-time dynamics for C2H
+
4 (X̃,Ã)

Damping of the coherent motion in Q2



60



61



62

References:

(1) M. Born and K. Huang, Dynamical theory of crystal lattices,

Oxford University Press, 1954
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