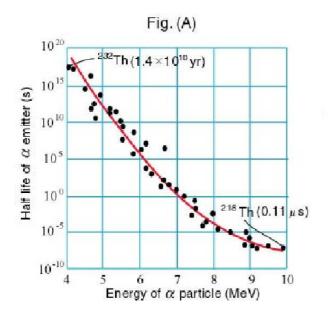
II.1 Alpha-Zerfall von Atomkernen

Geiger et al (1911): Messung der Halbwertszeiten verschiedener Alpha-Zerfälle \Rightarrow Zusammenhang zwischen Energie der emittierten Alpha-Teilchen und Halbwertszeit $T_{1/2}$:

$$T_{1/2} = Ce^{A/\sqrt{E}}. (1)$$

E: Energie der emittierten Alpha-Teilchen; A und C: an das Experiment anzupassende Fitparameter. Gemäß **Fig.** (A) beschreibt die empirische Formel (1) die experimentellen Daten sehr gut.



Half lives of alpha decays

The black dots are experimental data. The solid curve shows the value of the empirical formula (1). (The constants, A and C, are adjusted to the experimental data.)

G. Gamow (Russland, 1904 - USA, 1968) entdeckte, dass sich der Alpha-Zerfall von Atomkernen durch den Tunneleffekt verstehen lässt (1928; starkes Indiz für den Erfolg der Quantenmechanik).

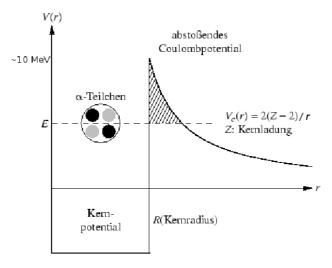


Abb. 12.6: abstoßen des Coulombpotential, $V_{Coul} = 2(Z-2)/r$

Tunnelwahrscheinlichkeit:

$$W(E) = \exp\left(-\frac{2a}{\hbar}\sqrt{2m(V_0 - E)}\right) \equiv T(E),\tag{2}$$

bzw. allg.

$$W(E) = \prod_{j=1}^{n} W_j(E) = \exp\left(-\int_{x_1}^{x_2} \frac{2}{\hbar} \sqrt{2m(V(x) - E)} dx\right), \tag{3}$$

 $x_1 = R$ (Kernradius), $x_2 = b = \frac{2(Z-2)}{E}$ (klassischer Umkehrpunkt, $\frac{2(Z-2)}{b} = E$).

$$\frac{2}{\hbar} \int_{R}^{b} dr \sqrt{2m(V_c(r) - E)} = \frac{2}{\hbar} \sqrt{2mE} \int_{R}^{b} dr \sqrt{\frac{b}{r} - 1} = \tag{4}$$

$$= \frac{2}{\hbar} \sqrt{2mEb} \underbrace{\left(\arccos\sqrt{\frac{R}{b}} - \sqrt{\frac{R}{b} - \frac{R^2}{b^2}}\right)}_{\frac{\pi}{2} - 2\sqrt{\frac{R}{b}} \text{ fuer } b \gg R}.$$
 (5)

$$W(E) = \exp\left[-\frac{2\pi}{\hbar}\sqrt{2m}\left(\frac{Z-2}{\sqrt{E}} - \frac{\sqrt{8R(Z-2)}}{\pi}\right)\right]$$
 (6)

Die Halbwertszeit $T_{1/2}$ des Kerns ist umgekehrt proportional zur Tunnelwahrscheinlichkeit (6):

$$\frac{1}{T_{1/2}} \propto W(E) \, w_\alpha \frac{v_0}{2R},\tag{7}$$

wobei w_{α} ein Maß für die Wahrscheinlichkeit ist, ein Alphateilchen im Kern zu finden (dass sich dort zwei Protonen und zwei Neutronen geeignet zusammenfinden, ist ja nicht eben selbstverständlich), und $v_0/(2R)$ die Anzahl der Stöße des Alphateilchens an die Coulombbarriere angibt (typische Geschwindigkeit des Alpha-Teilchens sei v_0).

Aus der entscheidenden $E^{-0.5}$ - Abhängigkeit in (6) folgt die Geiger-Nuttall-Regel:

$$\log_{10}(T_{1/2}) \propto \frac{1}{\sqrt{E}}.\tag{8}$$

Anhand der Vorfaktoren in Gl. (1) lassen sich verschiedene Zerfallsreihen unterscheiden.