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A) VIBRATIONAL STRUCTURE
IN ELECTRONIC SPECTRA

A.1) The Born-Oppenheimer approximation
[1]
Schrödinger equation for coupled electronic and nuclear
motions:

H = Hel + TK

Hel = Tel + U(x,Q)

Helφn(x,Q) = Vn(Q)φn(x,Q) (assume solved)

HΨ(x,Q) = EΨ(x,Q)

Ψ(x,Q) =
∑

m

χm(Q)φm(x,Q)

[TK + Vn(Q)− E]χn(Q) =
∑

mΛnmχm(Q)

Λnm =
∑

i
~2

Mi

∫
d3Nxφ∗

n(
∂φm
∂Qi

) ∂
∂Qi

−
∫
d3Nxφ∗

n(TKφm)

x and Q denote the sets of electronic and nuclear coor-
dinates, respectively. Correspondingly φ and χ stands
for the electronic and nuclear wave functions.
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Derivation of the coupled equations

For simplicity, put

TK = − ~2

2M

∂2

∂Q2

∑

m

(Tel + U + TK)χm(Q)φm(x,Q) =
∑

m

Eχm(Q)φm(x,Q)

∑

m

[Vm(Q) + TK]χm(Q)φm(x,Q) =
∑

m

Eχm(Q)φm(x,Q)

∑

m

{[Vm(Q)− E + TK]χm(Q)}φm(x,Q) =

∑

m

~2

M

(
∂χm

∂Q

)(
∂φm

∂Q

)

−
∑

m

χm (TKφm)

∫

φ∗
nd

3Nx : (Vn + TK − E)χn =

=
∑

m

~2

M

∫

φ∗
n

∂φm

∂Q

∂χm

∂Q
d3Nx

−
∑

m

χm

∫

φ∗
n (TKφm) d

3Nx

=
∑

m

Λnmχm .
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So far still formally exact. Approximation: put

Λnm = 0

=⇒ [TK + Vn(Q)− E]χn(Q) = 0 .

It follows:

• (Electronic) eigenvalues, Vn(Q), of a given
state correspond to the potential energy hy-
persurface for the nuclear motion.

• Total molecular wavefunction becomes a prod-
uct of a nuclear and electronic wave function:

Ψ(x,Q) = χn(Q)φn(x,Q)

• Valid, e.g., when φn(x,Q) ≈ φn(x−Q).

• BO approximation!

Electrons follow the nuclear motion instantaneously (adi-
abatic), due to the large ratio between nuclear and elec-
tronic masses (i.e. the large effective mass of a nucleus
compared to that of an electron Mi ≫ mel).
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Simple estimates for hierarchy of energy scales

Eelec ∼< Te >∼ ~2κ2
elec

m
∼ ~2

md2

with d ≈ molecular dimension

Evib ∼ ~

√

f

M
mit f ∼ ∂2Eelec

∂R2
∼ Eelec

d2

=⇒ Evib ∼ ~2
√

1

Mmd4
=

√
m

M

~2

md2
=

√
m

M
Eelec

Erot ∼ < Trot > ∼ ~2

I
=

~2

Md2
=

m

M
Eelec

=⇒ Erot ≪ Evib ≪ Eelec

Larger electronic energy scale, shorter time scale of the
oscillations (for non-stationary states).

⇓
Similar to classical picture; fast readjustment of elec-
trons to nuclear changes.
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Analogous for relative nuclear displacements

< R2 >∼ ~
Mω

< Q2 >∼ ~2

MEvib

(
~√
fM

)

κ =

√
< R2 >

d
∼ ~

d
√
M~

4
√
Mmd4 = 4

√

m/M

... and for nonadiabatic coupling elements

< Λnm > ∼ ~2

M
<

∂2

∂R2
>elec +

~2

M
<

∂

∂R
>elec<

∂

∂R
>vib

∼ ~2

M
k2elec +

~2

M
kelec

√

Mw

~
<

∂

∂Q
>vib

∼ ~2

Md2
+

~2

Md

√√
fM

~

∼ m

M
Eelec +

~2

M
3
4d

4

√

~2

md2~2d2

∼ m

M
Eelec +

~2

M
3
4d2m

1
4

m
3
4

m
3
4

∼ m

M
Eelec +

(m

M

)3
4
Eelec

Erot ≈ Term(∂2/∂R2) ≪ Term(∂/∂R) ≪ Evib

κ4 κ4 κ3 κ2 × Eelec
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Hellmann-Feynman relation

Re-writing the non-adiabatic (derivative) coupling terms:

∂Hel

∂Qi
φn(x,Q) +Hel

∂φn(x,Q)

∂Qi
=

∂Vn(Q)

∂Qi
φn(x,Q) + Vn(Q)

∂φn(x,Q)

∂Qi

Multiplying from the left by φ∗
m and integrating over

the electronic coordinates, x, leads to:

〈φm(Q)|∂Hel

∂Qi
|φn(Q)〉x + Vm(Q)〈φm(Q)|∂φn(Q)

∂Qi
〉x =

= 〈φm(Q)|∂Vn(Q)

∂Qi
|φn(Q)〉x + Vn(Q)〈φm(Q)|∂φn(Q)

∂Qi
〉x

n = m : 〈φn(Q)|∂Hel

∂Qi
|φn(Q)〉x =

∂Vn(Q)

∂Qi

n 6= m:

∫

d3Nxφ∗
m

(
∂φn

∂Qi

)

=

∫
d3Nxφm(x,Q)

(
∂Hel
∂Qi

)

φn(x,Q)

Vn(Q)− Vm(Q)

In the vicinity of a degeneracy the derivative couplings
can diverge and the adiabatic approximation is expected
to break down!
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Harmonic oscillator and its eigenfunctions

The Hamiltonian of a quantum harmonic oscillator is
given by

Ĥ = −~2

2µ

∂2

∂r2
+

1

2
f r2

Using the relationship between dimensioned (r) and di-
mensionless coordinates (Q),

Q =
√

µ ω
~ r; ω =

√
f
µ

we get

Ĥ = ~ ω
2

(

− ∂2

∂Q2 +Q2
)

The eigenfunctions of the harmonic oscillator involve
the well-known Hermite polynomials and read as

χn(Q) = {√π n! 2n}−
1
2 e−

Q2

2 Hn(Q)

The first Hermite polynomials, Hn(Q), are

H0(Q) = 1, H1(Q) = 2 Q, H2(Q) = 4 Q2 − 2.

Remember symmetry:

Hn(−Q) = (−1)nHn(Q)
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The multidimensional harmonic oscillator

H =
∑

i

Hi =
∑

i

~ωi

2

(

− ∂2

∂Q2
i

+Q2
i

)

From [Hi, Hj] = 0 (for all i, j ≤ M(= 3N − 6)) ⇒

Multidimensional eigenfunction Ξ is product function:

Ξv1,v2,..(Q1, . . . , QM) = χv1 (Q1)χv2 (Q2) . . . χvM (QM)

The individual eigenfunctions are well known and read
as

χv (Q) = {√π v! 2v}−1/2
e−Q2/2 Hv(Q)

The first Hermite polynomials Hv are

H0(Q) = 1, H1(Q) = 2Q, H2(Q) = 4Q2 − 2.

Meaning of the coordinate Q: displacement as mea-
sured in units of the zero-point amplitude, i. e.,

χ0(1) = e−1/2χ0(0).
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A.2) The Franck-Condon principle

Consider the transition between different electronic
states, particularly, a transition from the electronic ground
state , GS, to one of the excited states, ES (optical, UV-
absorption).

The transition probability follows from first order time-
dependent perturbation theory;

I(ωph) ∼
∑

F

|〈ΨF |H1|ΨI〉2δ(EF − EI − ~ωph)

where ΨI and ΨF are eigenfunctions of H0 (isolated
molecule) and correspond to the initial and final states
during a transition.
Interaction between the molecule and radiation field in
the dipole approximation:

H1(t) ∼ −
N∑

j=1

e(~ε.~rj)E0(t)

In contrast to the IR-spectrum the summation index, j,
runs only over electronic coordinates (orthogonality of
the electronic wave functions).
Within the Born-Oppenheimer approximation the wave
functions are written in a product form;

ΨI = φiχυ; ΨF = φf χ̃υ
′



12

v=0
1

2

3

1
2

3
4

χ

χ

,

,2 2E

E0 0

∼∼

v’=0

with

(Tk + Vi − Eυ)χυ = 0

(Tk + Vf − Ẽυ
′)χ̃υ

′ = 0

Note that χυ and χ̃υ
′ are vibrational functions of differ-

ent potential energy curves.
Evaluate the matrix elements in the Born-Oppenheimer
approximation;

∫

Ψ∗
F (x,Q)H1ΨI(x,Q)d3NxdQ =

=

∫

χ̃∗
υ
′(Q)

∫

φ∗
f(x,Q)H1φi(x,Q)d3Nx

︸ ︷︷ ︸

χυ(Q)dQ

The integral Tfi(Q) =
∫
φ∗
f(x,Q)H1φi(x,Q)dx is called

the electronic transition moment or dipole-transition-
(matrix) element. It replaces the dipole moments (=di-
agonal matrix elements) evaluated in IR-spectroscopy.
Therefore, one can write the matrix elements as follows:
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∫

Ψ∗
FH1ΨIdxdQ =

∫

χ̃∗
υ
′(Q)Tfi(Q)χυ(Q)dQ

The transition moment depends on Q only through the
electronic wave function. If the transition moment de-
pends sufficiently weakly on Q, one can write;

Tfi(Q) ≈ Tfi(Q = 0)

with an appropriate reference geometry, Q = 0. It is
natural to choose (mostly) the reference geometry to be
the equilibrium geometry of the molecule in the initial
state:
Condon approximation or Franck-Condon principle.

In the Condon approximation:
∫

Ψ∗
FH1ΨIdxdQ = Tfi(Q = 0)Sυ

′
υ

with Sυ
′
υ =

∫
χ̃∗
υ
′(Q)χυ(Q)dQ.

Sυ
′
υ and its square are Franck-Condon overlap integral

and Franck-Condon factor, respectively (see also [2]).
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I ( w )

The spectrum follows immediately:

I(ωph) ∼ |Tfi(Q = 0)|2
∑

υ
′ |Sυ

′
υ|2δ(Ẽυ

′ − Eυ − ~ωph)

The relative intensities are determined only through vi-
brational wave functions, electronic wave functions play
almost no role.

Principle of vertical transitions !
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A.3) Shifted harmonic oscillator

Important special case: harmonic potentials with the
same curvature (force constant).

Define Q as the dimensionless normal coordinate of ini-
tial state (mostly, electronic ground state).

Vi(Q) = ω
2Q

2 (~ = 1)

With the same curvature (force constant) for Vf(Q), we
have

Vf(Q) = Vf(Q = 0) +
ω

2
Q2 + kQ

with k =
(
∂Vf
∂Q

)

Q=0
; Vf(Q = 0) ≡ V0

The linear coupling leads to a shift in the equilibrium
geometry and a stabilization energy along the distortion
(see next Fig).
The oscillator can be easily solved by adding the quadratic
terms (completing the square);

Vf(Q) = V0 +
ω

2

(

Q +
k

ω

)2

− k
2

2ω

= V0 − k
2

2ω + ω
2Q

′2

↑ ↑
Stokes-shift ; New normal coordinate
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VfVf

V

V i

f

2w
=

2

=
w

∆

V

Q

fV V0(0) =

κ k

κ

k

k

Note: ∂
∂Q = ∂

∂Q
′ =⇒ same eigenfunctions =⇒

Sυ
′
υ = Nυ

′Nυ

∫ ∞

−∞
dQHυ

′

(

Q +
k

ω

)

Hυ(Q)e−
Q2

2 e−
1
2(Q+k/ω)2

We restrict ourselves to the special case where υ = 0.
By substituting Q

′
= Q + κ and κ = k/ω, one can

easily obtain:

Sυ
′
0 = Nυ

′N0

∫ ∞

−∞
dQ

′
Hυ

′

(

Q
′
)

e−Q
′2
eκQ

′−1
2κ

2

There are several possibilities to evaluate these inte-
grals, such as the method of generating functions (see
exercises) or operator algebra (occupation number rep-
resentation of harmonic oscillator).



Derivation of Poisson Distribution

Start from

Sυ
′
0 = Nυ

′N0

∫ ∞

−∞
dQ

′
Hυ

′

(

Q
′
)

e−Q
′2
eκQ

′
e−

κ2

2

and supplementary sheet on Hermite polynomials, item
2. Use λ = κ/2, z = Q

′ → Q, υ
′ → υ

⇒ Sυ0 = NυN0

∫ ∞

−∞
dQHυ (Q) e−Q2

e−κ2/4
∞∑

n=0

(κ/2)n

n!
Hn(Q)

[

Nv =
{√

π υ! 2υ
}−1

2

]

= NυN0e
−κ2/4

∞∑

n=0

(κ/2)n

n!

δυ n
NυNn

= e−κ2/4 (κ/2)υ

υ!

√
2υυ!

=⇒
|Sυ0|2 = (κ2/2)υ

υ! e−κ2/2

Poisson Intensity Distribution
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Summary of the shifted harmonic oscillator

P (Eph) =
∑

υ

aυ

υ!
e−aδ(Eph − V0 + aω − υω)

where a = κ2/2 = k2/(2ω2)

Sum rule:

∑

υ

|Sυ0|2 = e−a
∑

υ

aυ

υ!
= e−ae+a = 1

Mean quantum number:

ῡ =
∑

υ

aυ υ

υ!
e−a = a

∑

υ>0

aυ−1

(υ − 1)!
e−a = a

The parameter a is a measure of the vibrational excita-
tion in an electronic transition.
aω is the mean vibrational energy during the transition
( = Stokes-shift k2/(2ω))

For a → 0 we have |Sυ0|2 −→ δυ0, which means no
excitation (potential curves Vi and Vf are identical).
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Intensity ratio: |Sυ+1,0/Sυ,0|2 = a
υ+1

Mean energy (center of gravity or centroid):

Ē =
∫
EP (E)dE

=
∑

(V0 − aω + υω)a
υ

υ!e
−a

= V0 − aω + ω
∑

υ υ
aυ

υ!e
−a

= V0 − aω + ω
∑

υ
aυ

(υ−1)!e
−a = V0

Energetic width:

(∆E)2 = (E − Ē)2 = E2 − Ē2

=
∑

υ(υ − a)2ω2aυ

υ!e
−a

=
∑

{υ(υ − 1) + υ − 2aυ + a2}ω2aυ

υ!e
−a

=
∑

ω2 aυ

(υ−2)!e
−a + (a− 2a2 + a2)ω2

= (a2 + a− a2)ω2 = aω2 = k2

2

=⇒ ∆E ∼ k√
2

Width is defined through the gradient of the final state,Vf(Q),
at Q = 0 (because of the finite extension of χ0(Q)).
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Two-dimensional shifted harmonic oscillator

Vi(Q1, Q2) =
∑

j=1,2

ωj

2
Q2

j (~ = 1)

Vf(Q1, Q2) = Vf(Q = 0) +
∑

j=1,2

(
ωj

2
Q2

j + kjQj)

Ẽυ1,υ2 − E0,0 = V0 −
k21
2ω1

− k22
2ω2

+ ω1υ1 + ω2υ2

Ψf = φf χ̃υ1(Q1) χ̃υ2(Q2)

|Sυ1υ2,00|2 = |Sυ10|2|Sυ20|2

P (Eph) =
∑

υ1,υ2

aυ11
υ1!

aυ22
υ2!

e−a1−a2 ×

× δ(Eph − V0 + a1ω1 + a2ω2 − υ1ω1 − υ2ω2)

where aj = κ2
j/2 = k2j/(2ω

2
j ) (j = 1, 2).

”Convolution” of two Poisson intensity distributions!
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A.4) The frequency-modified harmonic oscil-
lator
Non-totally symmetric modes :

∂Vf (Q)

∂Q = 0

Next order in expansion: Vf(Q) = Vf(0) +
γ
2Q

2 + ω
2Q

2

New frequency : ωf ≡ ω̂ =
√

ω(ω + γ)
New dimensionless normal coordinate:

Q̂ =
√

ω̂
ωQ = 4

√
ω+γ
ω Q

=⇒ Hf = −ω
2

∂2

∂Q2 +
ω+γ
2 Q2 ≡ −ω̂

2
∂2

∂Q̂2 +
ω̂
2Q̂

2

One can find the Franck-Condon factors as follows:

|S0,2υ+1|2 = 0

|S0,2υ|2 = 2
√
ωω̂

ω+ω̂

(
ω̂−ω
ω̂+ω

)2υ (2υ−1)!!
2υυ!

Example:

ω̂ = 2ω =⇒

|S0,0|2 =
√
8
3 ≈ 0.94, |S0,2|2 ≈ 0.05, |S0,2|2 ≈ 0.004

Only weak vibrational excitation !


