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B.5) The theorem of Jahn and Teller

Theorem (1937):
’Any molecule in a spatially degenerate electronic
state is unstable unless the degeneracy is accidental
or the molecule is linear.’

Or alternatively:
’Any non-linear molecule undergoes distortion when
its electronic state is degenerate by symmetry.’

Remarks:
-Spin degeneracy is not considered.
-When the degeneracy comes from an orbital that con-
tributes weakly to the bond, the distortion will be small.

In other words:
’At the equilibrium geometry of a non-linear molecule
the electronic state cannot be degenerate by symme-
try.’

Formal:
The instability comes from linear terms of the potential
energy matrix, which are missing in the case of linear
molecules.
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Proof:
We will point out here just the basic ideas.

Principle: (Group theory)

Let Eo be the energy of the equilibrium geometry in a
degenerate electronic state, i.e., the geometry is opti-
mized with respect to the totally symmetric modes:

Hoφ
o
l = Eoφ

o
l (e.g. 1 ≤ l ≤ 3)

whereHo and φ
o
l are the Hamiltonian and the wavefunc-

tion of the system, respectively, in the high-symmetry
situation.

Let us consider a small displacement, δQr, along the
non-totally symmetric modes:

H(δQr) = Ho +Hr · δQr +O(δQ2
r)

E(δQr) = Eo + Er · δQr +O(δQ2
r)

with

det |〈φo
l |Hr|φo

m〉 − Erδlm| = 0

that is, Er are the eigenvalues of this secular equation.
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The energy correction is negative for δQr −→ −δQr.
The first-order contribution yields unstability. It van-
ishes when all the matrix elements are zero. Using
the symmetry selection rules, the matrix elements are,
therefore, non zero when:

(Γ(φo)× Γ(φo))sym × Γ(Qr) ⊃ ΓA1

where sym refers to the symmetrized direct product.

Group theory shows that the symmetrized direct prod-
uct, (Γ(φo)×Γ(φo))sym, also contains non-totally symmetric
representations.

Jahn and Teller (1937):

In all molecular point groups, except for C∞v and
D∞h, there are non-totally symmetric modes that are
contained in the symmetrized direct product of any de-
generate irreducible representation.

Proof: Enumerative!
One considers the minimum number of equivalent points
for all topologically distinct realisations of a point group
and its irreducible representations.
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Examples:

1. Linear Molecules, C∞v and D∞h:

For all the degenerate irreducible representations,
E1(= Π), E2(= ∆), · · · , Ek,

(Ek)
2 = A1 + E2k

Let us consider the irreducible representation correspond-
ing to the bending mode:

Γ(Q2) = E1(= Π)

so that (Ek)
2 × Γ(Q2) + ΓA1 =⇒

no linear coupling terms are possible.

2. Planar X4-systems, D4h:

Two doubly-degenerate irreducible representations,

(Eg)
2 = (Eu)

2 = A1g + B1g + B2g

The following vibrational mode transforms like B2g.

B2gΓ
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3. Planar X3-systems, D3h:

Two doubly-degenerate irreducible representations

(E ′)2sym = (E ′′)2 = A′ + E ′

The following normal mode transforms like E ′.

Γ

Qy Qx

E’,

Comments:
Most of the Jahn-Teller active modes are degenerate,
cf., D3h. The tetragonal point groups are, however,
exceptions: C4, C4v, C4h, D4, D4h, S4, D2d. For them,
there are non-degenerate modes that are Jahn-Teller
active. The latter is due to the symmetry selection rules
and not to the lack of degenerate normal modes.
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B.6) The E ⊗ e Jahn-Teller effect

a) The E ⊗ e Hamiltonian:
As a starting point, the common case will be consid-
ered, i.e., a three-fold axis in a C3v or aD3h point group.
The simplest system to think of would be a triatomic
molecule in an E electronic state, whose atoms are lo-
cated at the corners of an equilateral triangle. For ex-
ample, the H3, Li3 or Na3 molecule.

y

x

In such a molecule, as also in NH3 or BF3, there is
a degenerate vibrational normal mode of E symmetry.
The components transform like (x, y) and they will be
hereafter denoted as (Qx, Qy).
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In this situation it is convenient to use polar coordinates
in the x,y plane.

Qx = ρ cosχ, Qy = ρ sinχ

Next, we are going to define the complex coordinates,
Q+ and Q−,

Q+ = Qx + iQy = ρ (cosχ + i sinχ) = ρ eiχ

Q− = Qx − iQy = ρ (cosχ− i sinχ) = ρ e−iχ

Let us now consider the effect of the C3 operation on
the coordinates, that is, a 2π

3 rotation.

C3 Qx = cos (
2π

3
) Qx − sin (

2π

3
) Qy

C3 Qy = sin (
2π

3
) Qx + cos (

2π

3
) Qy

so that

C3 Q+ = cos (
2π

3
) Qx − sin (

2π

3
) Qy

= i sin (
2π

3
) Qx + i cos (

2π

3
) Qy

= e(
+2πi
3 ) Qx + i e(

+2πi
3 ) Qy

= e(
+2πi
3 ) Q+

and also,

C3 Q− = e(
−2πi
3 ) Q−
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A (2π/3) rotation yields the multiplication of the com-

plex coordinates with a complex phase factor e(
±2πi
3 ).

We can express the transformation in a matrix form as

C3

(
Q+

Q−

)

=

(

e
+2πi
3 0

0 e
−2πi
3

)(
Q+

Q−

)

The components of the electronic states transform also
like (x,y) and will be denoted here as Φx, Φy. As done
for the nuclear coordinates, we define also a set of com-
plex functions:

Φ+ =
1√
2
(Φx + iΦy), Φ− =

1√
2
(Φx − iΦy)

(The factor 1/
√
2 comes from the fact that both sets,

Φx, Φy and Φ+, Φ−, must be normalized.)

A rotation by 2π/3 yields,

C3Φ± = e±2π/3 Φ±

Q± and Φ± are the most suitable coordinates and func-
tions to use, since they are adapted to the symmetry of
the problem.
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Let us consider now the matrix elements of the electronic
Hamiltonian in the Φ± basis set up to second order in
the coordinates Q±. We have:

∫

dx Φ∗o
+ Hel Φ

o
+ = W (0) +W

(1)
+ Q+ +W

(1)
− Q−

+
1

2
W

(2)
++Q+Q+ +

1

2
W

(2)
−−Q−Q− +W

(2)
+−Q+Q−

By applying C3 to this equation, the left side is multi-
plied by

(

e+2πi/3
)∗

e+2πi/3 = 1

sinceHel is invariant. Thus the left side is also invariant.
On the right side, all theW ′s, for which the combination
of the Q′s is not invariant, have to vanish, i.e.,

W
(1)
+ = W

(1)
− = W

(2)
++ = W

(2)
−− = 0

So that:
∫

dx Φ∗o
+ Hel Φ

o
+ = W (0) +W

(2)
+−Q+Q−

and also
∫

dx Φ∗o
− Hel Φ

o
− = W (0) +W

(2)
+−Q+Q−

with the same coefficients.
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The off-diagonal matrix elements are:
∫

dx Φ∗o
+ Hel Φ

o
− = V (0) + V

(1)
+ Q+ + V

(1)
− Q− +

1

2
V

(2)
++Q+Q+

+
1

2
V

(2)
−−Q−Q− + V

(2)
+−Q+Q−

Applying C3 to the l.h.s. yields a factor

e−2πi/3e−2πi/3 = e−4πi/3 = e+2πi/3,

so that we finally get:

V (0) = V
(1)
− = V

(2)
++ = V

(2)
+− = 0

i.e.,
∫

dx Φ∗o
+ Hel Φ

o
− = V

(1)
+ +

1

2
V

(2)
−−Q−Q−

We have thus determined the nonvanishing coefficients.
Abbreviations:

W (0) = 0 (zero of energy)

W
(2)
+− = ω

2

V
(1)
+ = k

V
(2)
−− = g

Finally, the electronic Hamiltonian in the Φ± basis set
is:

Hel =
ω
2 Q+Q− 1 +

(
0 kQ+ + 1

2gQ
2
−

kQ− + 1
2gQ

2
+ 0

)

or with Q+ = ρ eiχ, Q− = ρ e−iχ
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Hel =
ω
2ρ

2 1 +

(
0 kρeiχ + 1

2gρ
2e−2iχ

kρe−iχ + 1
2gρ

2e2iχ 0

)

This is a Diabatic Representation, where the electronic
Hamiltonian matrix, Hel is not diagonal.

The total E ⊗ e-JT Hamiltonian is formed by adding
the kinetic operator for the nuclear motion:

Tk = −ω

2

(
∂2

∂Q2
x

+
∂2

∂Q2
y

)

In polar coordinates (ρ, χ) Tk reads as:

Tk = − ω
2ρ2

(

ρ ∂
∂ρρ

∂
∂ρ +

∂2

∂χ2

)

H =
(
Tk +

ω
2ρ

2
)
1 +

(
0 kρeiχ + 1

2gρ
2e−2iχ

kρe−iχ + 1
2gρ

2e2iχ 0

)

The term kρeiχ is called linear JT-coupling.
The term 1

2gρ
2e−2iχ is called quadratic JT-coupling.
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b) The adiabatic potential energy surfaces
and wavefunctions:

The JT-Hamiltonian in the form specified above is the
easiest one from symmetry considerations and most suitable
for the calculation of spectra, but is not, however, too
descriptive. Therefore, for a better understanding of the
problems, we will consider also the adiabatic representation.

The adiabatic potential energy surfaces are obtained as
follows

det

(
−λ x

x∗ −λ

)

= 0, x = kρeiχ +
1

2
gρ2e−2iχ

and:
λ2 − |x|2 = 0 −→ λ1,2 = ±|x|

Then,

V1,2 =
ω

2
ρ2 ± λ1,2 =

ω

2
ρ2 ± |kρeiχ + 1

2
gρ2e−2iχ|

V1,2 =
ω
2ρ

2 ±
∣
∣kρ + 1

2gρ
2e−3iχ

∣
∣
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In most of the situations the quadratic coupling terms
are smaller than the linear ones. If we set g = 0, we ob-
tain the potential energy surfaces of the linear JT-effect:

V1,2 =
ω
2ρ

2 ± kρ

Within this approach the potential energy surface shows
a rotational symmetry, i.e, it is χ-independent. This
surface is the prototype of a so-called conical intersection
of potential energy surfaces.

Including the quadratic coupling term we have:

V1,2 =
ω
2ρ

2 ±
√

k2ρ2 + 1
4g

2ρ4 + gkρ3cos(3χ)

For small displacements, the ρ4 term can be dropped
out:

V1,2 =
ω
2 ρ2 ± k ρ

√
1 + g

kρ cos (3χ)

By expansion of the square root:

V1,2 =
ω
2 ρ2 ± k ρ + 1

2 g ρ2 cos(3χ)

In the linear + quadratic JT-effect, the potential energy
surfaces have a threefold symmetry. The lower surface
has three minima and three saddle points.
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Coordinates and JT surfaces for X3 molecules
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For the calculation of the adiabatic wavefunctions and
the non-adiabatic coupling terms, we are going to con-
sider just the linear JT-effect. We have

S+

(
0 kρeiχ

kρe−iχ 0

)

S =

(
λ1 0

0 λ2

)

with λ1 = kρ and λ2 = −kρ.

Obtaining the eigenvectors:

(a) λ1:
(

−kρ kρeiχ

kρe−iχ −kρ

)(
s11
s21

)

= 0

−s11 + eiχs21 = 0

s21 = e−iχs11

With s11 =
1√
2
eiχ/2 −→ s21 =

1√
2
e−iχ/2.

(b) λ2:
(

+kρ kρeiχ

kρe−iχ +kρ

)(
s12
s22

)

= 0

e−iχs12 + s22 = 0

and s22 =
1√
2
e−iχ/2; s12 = − 1√

2
e+iχ/2

we get,

S = 1√
2

(
eiχ/2 −eiχ/2

e−iχ/2 e−iχ/2

)
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The adiabatic wavefunctions, Φad
1,2, are obtained from

the diabatic ones, Φ±, as,

(
Φad
1

Φad
2

)

= S+

(
Φ+

Φ−

)

S+ =
1√
2

(
e−iχ/2 eiχ/2

−e−iχ/2 eiχ/2

)

i.e.,

Φad
1 =

1√
2

(

e−iχ/2Φ+ + eiχ/2Φ−
)

Φad
2 =

1√
2

(

−e−iχ/2Φ+ + eiχ/2Φ−
)

Using Φ+ = 1√
2
(Φx + i Φy), Φ− = 1√

2
(Φx − i Φy), we

get:

Φad
1 = cos (

χ

2
)Φx + sin (

χ

2
)Φy

i Φad
2 = − sin (

χ

2
)Φx + cos (

χ

2
)Φy

It is also interesting to analyze the dependence of the
adiabatic wavefunctions on χ/2. When following a 2π-loop
around ρ = 0, the adiabatic wavefunctions do not trans-
form into themselves, but:

Φad
1 (2π) = −Φad

1 (0)

Φad
2 (2π) = −Φad

2 (0)

They transform again into themselves after a 4π-loop.
This is the general behaviour for two-dimensional conical
intersections.
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Finally, we are going to calculate the non-adiabatic
coupling operator Λ. Since S depends only on the χ
angle, we have to consider just the term − ω

2ρ2
∂2/∂χ2:

Tk

(
Φad
1

Φad
2

)

= − ω

2ρ2

(

−1
4 i δ

δχ

i δ
δχ −1

4

)(
Φad
1

Φad
2

)

+

(
Φad
1

Φad
2

)

Tk

The non-adiabatic coupling operator Λ reads:

Λ = + ω
2ρ2

(

−1
4 i δ

δχ

i δ
δχ −1

4

)

Note that Λ diverges at ρ = 0.

The BO-approximation breaks down in the JT case.
Therefore, the diabatic representation is more suitable.
The nuclear motion on the adiabatic surfaces V1 and V2

is strongly coupled. As a consequence, the vibrational
energy levels on the adiabatic energy surfaces have no
longer physical meaning.
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Vibronic Line Spectrum for an A −→ E transition

with strong coupling.
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