B. 1) Diabatische elektronische Zustände

Fast-Entartungen von Potentialflächen umfassen i.d.R. nur wenige elektronische Zustände. Wir beschränken uns im folgenden auf <u>2 Zustände.</u> Nur in diesem Unterraum (und für bestimmte Q) ist die BO-Näherung verletzt.

Mit
$$\psi(x, Q) = \chi_1(Q)\phi_1(x, Q) + \chi_2(Q)\phi_2(x, Q)$$

kann man das DGL-System von Kap. A. 1 schreiben:

$$(\mathcal{H}_{ad} - E \quad \mathbf{1}) \quad \boldsymbol{\chi} = \mathbf{0}$$

Hier ist
$$\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$$
, $\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ und

$$\mathcal{H}_{ad} = T_k \quad \mathbf{1} \quad + \quad \left(\begin{array}{ccc} V_1(Q) - \Lambda_{11} & -\Lambda_{12} \\ -\Lambda_{21} & V_2(Q) - \Lambda_{22} \end{array} \right)$$

Matrix[‡]Hamiltonoperator für die gekoppelten Zustände in adiabatischer Darstellung (betrifft Elektronen + Kernwellenfunktionen) Statt der adiabatischen DS können wir auch in die sog. diabatische Darstellung gehen, indem wir schreiben

$$\psi(x,Q) = \sum \tilde{\chi}_m(Q)\phi_m(x,Q_\circ)$$

 Q_{\circ} soll dabei andeuten, daß die elektronischen WF nicht (oder nur schwach) von den Kernkoordinaten abhängen. Beachte, dass dies auch die Kernwellenfunktionen ändert. Formal ist

$$\left[\mathcal{H}_{el}(Q_{\circ}) - V_n(Q_{\circ})\right] \phi_n\left(x, Q_{\circ}\right) = 0$$

Da die $\phi_m(x, Q_\circ)$ nicht (merklich) von Q abhängen, gilt

$$<\phi_n(Q_\circ)|T_k|\phi_m(Q_\circ)>=$$

$$= \int dx \phi_n^*(x, Q_\circ) T_k \phi_m(x, Q_\circ) = T_k \delta_{nm}$$

 $d.h._{1}T_{k}$ ist in dieser Darstellung diagonal.

Dagegen ist (die Matrixdarstellung von) $\mathcal{H}_{el}(Q)$ für $Q \neq Q_{\circ}$ nicht mehr diagonal, d.h.

$$<\phi_n(Q_\circ | \mathcal{H}_{el}(Q) | \phi_m(Q_\circ) > = W_{nm}(Q)$$

mit
$$W_{nm}(Q_{\circ}) = V_n(Q_{\circ})\delta_{nm}$$
.

Im 2-Zustands-Fall haben wir also

mit
$$(\mathcal{H} - E \mathbf{1}) \, \widetilde{\boldsymbol{\chi}} = 0, \quad \widetilde{\boldsymbol{\chi}} = \begin{pmatrix} \widetilde{\chi}_1 \\ \widetilde{\chi}_2 \end{pmatrix}$$

$$\mathcal{H} = T_k \, \mathbf{1} + \begin{pmatrix} W_{11}(Q) & W_{21}(Q) \\ W_{12}(Q) & W_{22}(Q) \end{pmatrix}$$

Vergleich

adiabat. DS: \mathcal{H}_{el} diagonal, T_k nichtdiagonal. diabat. DS: \mathcal{H}_{el} nichtdiagonal, T_k diagonal.

Wir werden spater sehen, daß die diabatische DS für manche Probleme besonders geeignet ist und daher eine wichtige Rolle spielt.

Beide Darstellungen sind exakt, sofern man unendlich viele Zustände berücksichtigt.

Transformation von der diabat. auf die adiab. Basis in 2-Zustands-Problem

Ausgehend von oben erhält man die adiabatische Darstellung zurück, indem man die Potentialmatrix **W** diagonalisiert:

$$\mathbf{S}^{\dagger}(Q) \begin{pmatrix} W_{11}(Q) & W_{21}(Q) \\ W_{12}(Q) & W_{22}(Q) \end{pmatrix} \mathbf{S}(Q) = \begin{pmatrix} V_{1}(Q) & 0 \\ 0 & V_{2}(Q) \end{pmatrix}$$

mit
$$\mathbf{S}^{\dagger}(Q)\mathbf{S}(Q) = \mathbf{S}(Q)\mathbf{S}^{\dagger}(Q) = \mathbf{1}$$

Damit wird
$$\mathcal{H}_{ad} = \mathbf{S}^{\dagger} \mathcal{H} \mathbf{S} = \mathbf{S}^{\dagger} T_k \mathbf{S} + \begin{pmatrix} V_1 & 0 \\ 0 & V_2 \end{pmatrix}$$

Mit

$$\mathbf{S}^{\dagger} T_k \mathbf{S} + \mathbf{S}^{\dagger} \mathbf{S} T_k - \mathbf{S}^{\dagger} \mathbf{S} T_k$$

= $T_k - \mathbf{S}^{\dagger} [\mathbf{S}, T_k]$ folgt

$$\mathcal{H}_{ad} = T_k \mathbf{1} + \begin{pmatrix} V_1(Q) & 0 \\ 0 & V_2(Q) \end{pmatrix} + \mathbf{S}^{\dagger} [T_k, \mathbf{S}]$$

Dies ist der frühere Hamiltonoperator in adiabatischer DS mit

$$\Lambda = -\mathbf{S}^{\dagger} [T_k, \mathbf{S}]$$

Explizit:

$$\mathbf{S}(Q) = \begin{pmatrix} \cos \alpha(Q) & \sin \alpha(Q) \\ -\sin \alpha(Q) & \cos \alpha(Q) \end{pmatrix}$$

 α ist der 'Mischungswinkel' und beschreibt die Drehung der adiabat. Zustände relativ zu den diabat. Zuständen.

Man findet (nach einiger Rechnung):

$$\Rightarrow \Lambda = \begin{pmatrix} -\frac{\omega}{2}\alpha'^2 & \frac{\omega}{2}\alpha'' + \omega\alpha'\frac{\partial}{\partial Q} \\ -\frac{\omega}{2}\alpha'' - \omega\alpha'\frac{\partial}{\partial Q} & -\frac{\omega}{2}\alpha'^2 \end{pmatrix}$$

for
$$T_{k} = -\frac{\omega}{2} \frac{\partial^{2}}{\partial Q^{2}}$$

Die Bedeutung der Impulskopplung ist durch α' bestimmt, d.h. die 'Änderungsgeschwindigkeit' des Drehwinkels diabat. \Rightarrow adiabat. DS.

Die Terme $-\frac{w}{2}\alpha'^2$ heißen die

BO-Diagonalkorrektur. Sie können zum adiabatischen Potential addiert werden.

massdependent!

Ausdruck für adiabat. Potentiale $V_{1,2}$:

$$\det\begin{pmatrix} W_{11} - V_1 & W_{12} \\ W_{12} & W_{22} - V_2 \end{pmatrix} = 0$$

Die Lösung ergibt sich sofort aus derjenigen der spurfreien Matrix:

$$V_{1,2} = \frac{W_{11} + W_{22}}{2} \pm \sqrt{\left(\frac{W_{11} - W_{22}}{2}\right)^2 + W_{12}^2}$$

Definierte energet. Reihenfolge:

- oberes Vorzeichen → obere Fläche
- unteres Vorzeichen untere Fläche

Damit ist die Umrechnung diabat. \longrightarrow adiabat.

Basis komplettiert: EW liefern Potentiale, EV die Kopplung Λ .

Beide DS formal äquivalent.

Bei großen Potential differenzen ist die adiabat. DS besser (\sim diagonal), bei kleinen

Potentialdifferenzen die diabat. DS (analytisch).