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A) VIBRATIONAL STRUCTURE
IN ELECTRONIC SPECTRA

A.1) The Born-Oppenheimer approximation

[1]
Schrodinger equation for coupled electronic and nuclear
motions:

H=H,+ 1Tk
Hy=T,+U(x,Q)
Hepn(z, Q) = Vo(Q)¢n(z, Q) (assume solved)
HVY(x,Q) = FEV¥(x,Q)
me )P, Q)

Tk + Va(Q) — Elxn(Q) = 2 AnmXm(Q)

2 ES
Nom = 2 hﬁz J dnggb;(aa(g’Z)a%Z — [ @2y (Tx )

x and () denote the sets of electronic and nuclear coor-
dinates, respectively. Correspondingly ¢ and y stands
for the electronic and nuclear wave functions.




Derivation of the coupled equations

For simplicity, put

R 0*
= orage

Z (Ter + U + Tk ) Xxm(Q)Pm(x, Q) = Z Exm(Q)om(x, Q)

m

S Vil @) + T X (@6, Q) = 3 Exun( Q) Q)

m

> A{ValQ) = B+ Tx] xu(Q)} ¢l Q) =

25 (5) (%) Trme

/¢*d3N - (Vo +Tx — E) xp =

a¢maXm 3N,
/ R N




So far still formally exact. Approximation: put

Ny =0

= [Tk + Va(Q) — Elxn(Q) = 0 .

It follows:

e (Electronic) eigenvalues, V,(Q), of a given
state correspond to the potential energy hy-
persurface for the nuclear motion.

e Total molecular wavetfunction becomes a prod-
uct of a nuclear and electronic wave function:

V(z, Q) = Xn(Q)¢u(z, Q)
e Valid, e.g., when ¢, (x, Q) =~ ¢,(x — Q).

e BO approximation!

Electrons follow the nuclear motion instantaneously (adi-
abatic), due to the large ratio between nuclear and elec-
tronic masses (i.e. the large effective mass of a nucleus
compared to that of an electron M; > my;).
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Simple estimates for hierarchy of energy scales

h2 K2 h?
Eelec ~< Te > ﬂ ~ 0
m md

with d ~ molecular dimension

f aQEelec Eelec
Eo, ~ h\/— mit  f ~ oz

— Emb \/ d4 \/ md2 \/ elec

Eelec

m
Ero ~ < Tro >~ — —
t t 1 Md2 M

— Er ot < Em'b < Eelec

Larger electronic energy scale, shorter time scale of the
oscillations (for non-stationary states).

4

Similar to classical picture; fast readjustment of elec-
trons to nuclear changes.
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Analogous for relative nuclear displacements

. and for nonadiabatic coupling elements

< Ny > - 82> h2 8><8>_
nm M aRQ elec T M 8R elec 8R vib
h? h? Mw 9,
~ _k2 _ke ec > i
M elec_l_ M [ aQ b
o K[V
Md?  Md h
m h2 4 hQ
~ _Ee ec
AT i\ iR
m h2 m%
~ _Ee ec T
M Mid2mimi
3
m m\ 1
~ _Ee ec (_) Ee ec
7 el + i l

E,ot = Term(9?/OR?) < Term(90/OR) < Eyi

Kk K K3 K2 X B,



Hellmann-Feynman relation

Re-writing the non-adiabatic (derivative) coupling terms:

aHel a¢n(ﬂf, Q) .
an ¢n< L, Q) el an —
V,(Q) O¢n(, Q)

Multiplying from the left by ¢; and integrating over
the electronic coordinates, x, leads to:

(On(QI G162 + V@ (0 QIT2E, -

~ n QI L6, + V(@ on( I ZZEE,

nmm GlQI @) - T

n # m:

/ Vg (a¢n> S #an(z Q) (5) on:
av Vi@ Val@

In the vicinity of a degeneracy the derivative couplings
can diverge and the adiabatic approximation is expected
to break down!



Harmonic oscillator and its eigenfunctions

The Hamiltonian of a quantum harmonic oscillator is
given by

Using the relationship between dimensioned (7) and di-
mensionless coordinates (@),

_ W .. _ /!
Q=5 T; w—\/;

we get

> h w 9*
H:T(—WwLQ?)

The eigenfunctions of the harmonic oscillator involve
the well-known Hermite polynomials and read as

Q2

(@) = {Vanl 2377 % H,(Q)

The first Hermite polynomials, H,,(Q), are
HyQ) =1, Hi(Q)=20Q, H(Q)=4Q -2

Remember symmetry:

H,(-Q) = (=1)"H,(Q)
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The multidimensional harmonic oscillator

hw: [ O
H:ZH’:Z > ( 902 Q)

From [H;, H;] =0 (for all ¢, < M(=3N —6)) =

Multidimensional eigenfunction = is product function:

uvl v9,. <Q17 < QM) — Xy (Ql) Xv9 <Q2> < Xoy (QM)

The individual eigenfunctions are well known and read
as

o (Q) = {7 vl 20} e @2 H,(Q)

The first Hermite polynomials H, are

Ho(Q) =1, Hi(Q)=20Q, HyQ)=1Q* -2

Meaning of the coordinate (): displacement as mea-
sured in units of the zero-point amplitude, i. e.,

Xo(1) = 6_1/2X0(0).
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A.2) The Franck-Condon principle

Consider the transition between different electronic
states, particularly, a transition from the electronic ground

state , GS, to one of the excited states, ES (optical, UV-
absorption).

The transition probability follows from first order time-
dependent perturbation theory;

I(wpn) ~ D KWe|Hi|U1)?6(Er — Er — fwp)
F

where Uy and Up are eigenfunctions of Hj (isolated
molecule) and correspond to the initial and final states
during a transition.

Interaction between the molecule and radiation field in
the dipole approximation:

Hy(t) ~ — Z e(€:7) Eo(?)

J=1

In contrast to the IR-spectrum the summation index, j,
runs only over electronic coordinates (orthogonality of
the electronic wave functions).

Within the Born-Oppenheimer approximation the wave
functions are written in a product form:

Uy =adixo;, VYr=090rX,
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with
(Tk + ‘/z — EU)XU =0

(Tk -+ Vf — EU/>)~(U/ =0
Note that x, and x, are vibrational functions of differ-
ent potential energy curves.
Evaluate the matrix elements in the Born-Oppenheimer
approximation;

/‘1’?(%@)}11%(1:,@)6{3%(1@ _
= [ @ [ e @mmote e i@

The integral T7(Q) = [ ¢3(x, Q) H1¢(w, Q)dx is called
the electronic transition moment or dipole-transition-
(matrix) element. It replaces the dipole moments (=di-
agonal matrix elements) evaluated in [R~spectroscopy.
Therefore, one can write the matrix elements as follows:
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[ vittvidndQ = [ A@TH@n@dQ

The transition moment depends on () only through the
electronic wave function. If the transition moment de-
pends sufliciently weakly on (), one can write;

Tr(Q) = Ty(Q = 0)

with an appropriate reference geometry, () = 0. It is
natural to choose (mostly) the reference geometry to be
the equilibrium geometry of the molecule in the initial
state:

Condon approximation or Franck-Condon principle.

In the Condon approximation:

/\If}Hl\P]dﬁdQ = Tf@<Q = O)SU/U

with SU/U = f)ZZ’(Q)XU<Q>dQ

S, . and its square are Franck-Condon overlap integral
and Franck-Condon factor, respectively (see also [2]).
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The spectrum follows immediately:

[(wpn) ~ |T5(Q = 0)]* 3,/ 1S, [?6(Ey — Ey — heopn

The relative intensities are determined only through vi-
brational wave functions, electronic wave functions play
almost no role.

Principle of vertical transitions !
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A.3) Shifted harmonic oscillator

Important special case: harmonic potentials with the
same curvature (force constant).

Define () as the dimensionless normal coordinate of ini-
tial state (mostly, electronic ground state).

Vi@Q)=%Q°  (h=1)

With the same curvature (force constant) for V(Q), we
have

VAQ) = Vi(Q = 0) + %QQ +kQ

. oV
with k = (8—5) L, VHQ=0=V;

The linear coupling leads to a shift in the equilibrium
geometry and a stabilization energy along the distortion
(see next Fig).

The oscillator can be easily solved by adding the quadratic
terms (completing the square);

2
Vf<Q>:%+%<Q+§) _K

2w

_ B w2
_Vb 2w+2Q

T 7

Stokes-shift ; New normal coordinate
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2

9 — same eigenfunctions =— Q

0Q /

. 0 _
Note: 90 =

OO 2
S’U”U — NU/N'U/ dQH’U/ (Q —|—- E) H’U(Q)e_%e_%(@-l_k/w)Q
—00 W

N a'*

We restrict ourselves to the special case where v = 0.

. /
By substituting @ = @ + k and Kk = k/w, one can
easily obtain:

SUIO - N’U/NO/

—00

o0 /

AQH, (Q) e e ¥

There are several possibilities to evaluate these inte-
grals, such as the method of generating functions (see
exercises) or operator algebra (occupation number rep-

resentation of harmonic oscillator).

e 2



Derivation of Poisson Distribution

Start from
o0 / / / I g2
S 1, = N,/ Ny / dQ H, (Q) e~ erQ o=

o0

and supplementary sheet on Hermite polynomials, item

2. Use A = k/2, 2=Q - Q, v = &~ K/
e

N\

©¢)

> 2)"
#SU():NUNO/ dQH, ( 4§ : (%/2)
n=0

—nt n!

[N,U = {7 vl 2'“}_%}

9 s K/Q)n )
— N,N, k* /4 ( Un
= ; nl  N,N,

_w2ja (K/2)" ool

3l

|Sv0|2 2/2) e—/-cz/Q

—

Poisson Intensity Distribution
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Summary of the shifted harmonic oscillator

aU

P(E,,) = Z Je‘%( oh — Vo + aw — vw)
where a = /%2/2 = kz/(2w )= ( Poisson dlistribution )
AQ

mm

Sum rule:

Z [Suol? = e—az — =€t =1

v

Mean quantum number:

@zZ—e_ :azfu—l =

’U>O

The parameter a is a measure of the vibrational excita-
tion in an electronic transition.
aw is the mean vibrational energy during the transition

( = Stokes-shift k?/(2w))

For a — 0 we have |Syo|* — dyo, Which means no
excitation (potential curves V; and Vy are identical).
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Poisson distributions for various values
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Intensity ratio: |Sy11.0/Svo|* = = -5

Mean energy (center of gravity or centroid):

D — [ EP(E)dE
=> (Vo — aw + vw)%—l;e_“

:%—aw+wzvv%6_“
:V()—anerU(U“fvl)!e_“:VO

Energetic width:
(AE=(E—EQ?=E>—E2
= Z ( )2 2%16 ¢
=> {v(v—1)+v —2av + a2}w2%—1;e_“
=3 wQ(U‘iUQ)!e_“ + (a — 2a* + a*)w?

k

Width is defined through the gradient of the final state,V¢(Q),
at @@ = 0 (because of the finite extension of x((Q)).
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TESTS FUR PoiSSON- VERTEILUNG
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o - |
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|
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IIl. MOLECULAR ORBITAL DRAWINGS

16. Nitrogen

Symmetry:

ammm

20, E=-0.7137

22

79

Deoh
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15. Carbon Monexide

WILLIAM L. JORGENSEN AND LIONEL SALEM

Symmetry: Coov

SEeeT z

1T E=-0.63%95

30 E=-1.5210
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arbitrary units
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Novmalmoden eines (Symm. plon.) XYZ, - Molekirls
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Symmetry considerations H;CO
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Two-dimensiOEl shifted harmonic oscillatog_

V(@@= 2@ (h=1)

j=1,2
w.
Vi(@uQ2) = Vi@ =0)+ (2@ + Q)
j=12
2 k2 k2
Eyi v, — Eopo= W — 5 L — 2 4 g + wats
w1 2w2

Ut = of Xor(Q1) Xon(Q2)

|Sv102,00|2 — |S’U10|2|S’020|2

al ao?
— 3 P(Ep ) — E _1_26_(11_(12 X
v1! Ul
v1,V2

X (S(Eph = Vb + a1w1 + Gowo — VW1 — ’UQCUQ)

!
where a; = K7/2 = k3/(2w3) (5 =1,2).

” Convolution” of two Poisson intensity distributions!
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A.4) The frequency-modified harmonic oscil-
lator

Non-totally symmetric modes : Wi _

0Q

Next order in expansion: Vi(Q) = V;(0) 4+ 2Q* + £Q*

New frequency : wr =@ = \/w(w + )
New dimensionless normal coordinate:

Q=y/2e ==

s = _w @ ety 2 — 0 02
Hyp = 2(‘9@2—'— 9 Q"= 2902 QQ

One can find the Franck-Condon factors as follows:

1S0.2041]* =0
1505 |2 _ 2Vwd (@—w)QU (20=1)!!
4U T

w—+w wW+w 2U!

5 2 0.94, [Sp2]? ~ 0.05, |Sg2|* & 0.004

3

Only weak vibrational excitation !
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B) THE JAHN-TELLER EFFECT AND
VIBRONIC INTERACTIONS

B.1) Diabatic electronic states

Near-degeneracies of potential energy surfaces usually
involve just a few electronic states. In the following, we
shall restrict ourselves to two states. We shall assume
that, exclusively within this subspace (and a certain set
of Q), the Born-Oppenheimer approximation does not

hold.

As the total wavefunction is

U(z, Q) = x1(Q)1(z, Q) + x2(Q)pa(z, Q)

we can write the linear differential equation system
from Ch. A.1 as

(Had_E]-> X:O
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is the Hamiltonian operator in matrix form for the
coupled states in the adiabatic representation (involv-
ing electronic and nuclear wavefunctions).

Instead of the adiabatic representation, we can use
the so-called diabatic representation where the wave-
function is written as:

Z Xm qu L QO)

where ()¢ implies that the electronic wavefunction ei-

ther does not depend on the nuclear coordinates or it
does very slightly. Note that in this representation also
the nuclear wavefunction changes.

From a formal perspective, we can write:

Hei(Qo) — Vi(Qo)]pn(z, Qo) =0
Since ¢,,(x, Qo) depends only slightly on Q, then

<¢n(iv> Qo) | Tk dm(, Qo)> = (1)

hence, T}, is diagonal in this representation.
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Conversely, the matrix representation of H;(Q) for
Q) # () is no longer diagonal and:

<¢R(QO> |Hel(Q)| ¢m<QO>> — an(@)

For the two-state case, we also have:

(H— E1)x =0 ;z:<>f1)

X2
with
B Wi (Q) Wa(Q)
=D+ ( Wia(Q) Wa(Q) )
Comparison

Adiabatic representation: H,; diagonal, T} non-diagonal.
Diabatic representation: H.; non-diagonal, T}, diagonal.

We shall see later that the diabatic representation is
particularly suitable for certain types of problems and
therefore it plays a very relevant role.

It should be stressed that both representations are ex-
act, as long as an infinite number of states is considered.
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Diabatic-adiabatic basis transformation in
the two-state problem

It can be seen from the equations above that the adia-
batic representation can be recovered by diagonalisation
of the potential matrix W'

Wi (Q) Wa(Q) (@) 0
5'(@) (Wm( Q) Wan(Q )) Q)= ( 0 V2<Q>)
with §7(Q) S(Q) = S(Q) ST(Q) =1

From this, it follows

Hoa = STHS = S'T,.S + ( ni@Q) o ) ,

and with
S'T.S + S'ST,, — S'ST), = T}, — S'[S, T}]
we obtain

_ i@ 0
Hog =11+ ( 0 VQ(Q)) —I—ST[Tk,S]

which is the original Hamiltonian operator in the adi-
abatic representation with

A= -S'T},S].
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Explicitly,

5@) - (50 wmed)

where « is the mixing-angle describing the relative rota-
tion of the adiabatic states with respect to the diabatic
ones.

After some calculations, we can find that:

W2 WA 10
A — 5 Y QT+ Wo 90
— W _wa/i _QO/Z
2 0Q 2
for T = —w 0%

The meaning of the momentum coupling can be un-
derstood by means of o as the velocity of change of the
rotation angle between the diabatic and the adiabatic
representations.

The terms — 2o/

o'~ correspond to the on-diagonal mass-
dependent corrections which can be added to the adia-

batic potential.
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Expression for the adiabatic potential V] o:

Win—Vi Wy
det =0
e( Wi sz—vz)

[ts solution can be obtained immediately from the
traceless matrix:

Wi+ W. Wi — W\ 2
‘/12: 11 22:|:\/< 11 22) —|—W122

2

where we have implicitly defined the following energetic
ordering:

- upper symbols — upper surface
- lower symbols — lower surface

In order to complete the diabatic-adiabatic basis trans-
formation: eigenvectors provide the potentials and eigen-
values provide the coupling A .

Both representations are formally equivalent.

When energy differences between states are large, the
the adiabatic representation is better (diagonal), how-
ever for small differences the diabatic representation
(analytic) should be used.
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B.2) A simple model of vibronic coupling

Use a diabatic electronic basis and expand coupling
terms:

H=Tk1+ W

W@ = SN™Qit - (n#w)

with Q;: normal coordinates of V{(Q),
and, for instance, k@@) = (OVh/0Qi) o—p-

ki(n) is the gradient of the excited potential energy sur-

face at the Franck-Condon zone centre.
Analogously for the other coupling constants.

The coupling constants can therefore be determined
from ab initio calculations (few points are needed).

(nn)

Selection rule for A\,

FnXFQXFn/DFA
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a) Hamiltonian for a two-state case:

H = (—lZw-a—Q—i—lZwQZ)l%—
N 2 '0Q? 2

E,+Y kj(»g)Qj Yo NQ
SAQ B+ Y EMQ,

Electronic states with different symmetries — Modes [
and j are different.

For a first insight into the phenomena, the g mode will
be dropped and only one term will be considered in the
off-diagonal element:

Wy 82

H=50 QQ)”(A%U tg)

This is almost the simplest case that one can think of,
but it still shows many of the representative effects of
vibronic interactions.

In the diabatic representation H is not too descriptive.
Let us have a look then at the adiabatic potential en-
ergy Curves:

Byt B\ BB

b= ,
2 2

:Vi——Q + B+ /AE? + X202
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L

E,’

i.e., the diabatic and the adiabatic potential energy
curves are identical (how it should be). @, # 0 yields
repulsion between the potential energy curves. A qual-
itative picture is displayed next,

IfQ,=0 then V.=E4+AE=

The upper potential energy curves, V., are always steeper
due to the interaction.

For V_ a double minimun can be obtained for strong
couplings: Symmetry breaking.

Repulsion of potential energy curves and symmetry low-
ering (linear — non-linear; planar — non-planar) are
important signs of vibronic interaction with other elec-
tronic states.
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Calculation of the curvature using Taylor expansion:

W 1 \2Q?
— FE+2Q?+AE |1+
Vi + QQ“ ( +2AE2+ )
)\2@2
INE?

—Ej:AE+1 i)\—Q Q?
- o\ AR )

=E+%QiiAEi

+ _ A2

The change in the curvature is symmetric, as the re-
pulsion of the potential energy curves. The expression
for w, holds only for positive frequencies. This yields
a critical coupling strength, A., for obtaining a double
mMInimum:

N=AFE - w,

If A > A, @, = 0 represents a local maximum. The
minima are the non-trivial solutions of the equation:

oV_ NQ.,
OQu VAE? + Q2

A2 AR
=>Q2i\/ -

0

2 2
Wz A
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The solutions are real and # 0 if A > A.. The stabiliza-
tion energy, E, represents the lowering of the minimum
of the lower potential energy curve relative to the min-
imum in the absence of vibronic coupling (A = 0) due
to an asymmetric distortion:

wy [ A AFE :
B=V-0) - V@) =% (2~ 5F)

This expression is formally always defined, but holds
only for A > A..

Beside the potential energy curves, we are interested
also in the non-adiabatic couplings, given by the deriva-
tive of the rotation angle, o

1 2 W
a(Q,) = = arctan =

2 Wi — W
Substituting and differentiating:

1 AQy
a(Q,) = 5 arctan AC_QE

1 A AAE /2

1
2 1L N2 AE  AE?+ N02
1+W + Qu
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One obtains a Lorentzian curve with a width and a
height given by hwhm = % and o/(0) = ﬁ, respec-
tively.

The area under the o/(Q,) curve has to be 7 and, there-
fore, the limits for a(£o0) are £7.

a(Qy) cf(QJ A
it /KMME
4
It u AT\E Qu
4

One can see from this expression that for fixed values
of A and w,, the non-adiabatic effects increase with de-
creasing AFE.

Comparison of criteria:

Double minimum: A > w, - AFE

Non-adiabatic effects: A>AFE, w, > AFE

For w, < AFE, the criterion for the double minimum is
easier to fulfil than for non-adiabatic effects.

— different validity of the diagonal approximation in
the adiabatic and the diabatic basis!

w, AE < \°> < AE?

Double minimum / adiabatic app. valid



B.3) Conical intersection and vibronic dynamics
in the ethene radical cation, CoH

Schematic representation of the relevant vibrational normal
modes and molecular orbitals of CoH"

(Mode 1-3: totally symmetric modes, Mode 4: Torsion)
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Potentialkurven (links) und Durchschneidungssaum (rechts) von C,H," (X, 4)
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Perspektiv. Darstellung der konischen Durchschneidung
und nichtadiabatischen Kopplungselemente des Prototyp

g-u - Problems :  C,H, (X,A)

MO =D 0D 1D




H. KOPPEL, W. DOMCKE, AND L. S. CEDERBAUM

d : EXPERIMENT

b THEORY

RELATIVE INTENSITY

18.5 | 11

IONIZATION ENERGY (eV)

3. 26.  The first band in the photoelectron spectrum of ethylene. (a) The experime
ing according to Pollard et al.**” (b) The result of the vibronic coupling calculation
fwhm = 0.01 eV). For the values of the parameters see Table V.
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Wavepackets dynamics for CoH,” (X,A)
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Short-time dynamics for CoH; (X,A)
“Coherent motion for ()7 and )5
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Long-time dynamics for CoH,” (X,A)
Damping of the coherent motion in ()9
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Raum Q, - Q, fiir C;H,/ (X, A) [22]
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C,H, (X, A): Wahrscheinlichkeitsdichte entlang der
Koordinate Q, der koppelnden Mode [23]
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B.4) Conical intersections of potential energy surfaces

Ample numerical experience shows that degeneracies are usually of conical shape
(degeneracy is lifted in 15t order of the nuclear displacements)

energy

See also: D. Truhlar and A. Mead, Phys. Rev. A 68 (2003) 032501

W. Domcke, D. R. Yarkony and H. Képpel (Eds.)

- Conical Intersections: Electronic structure,
dynamics and spectroscopy o
- Conical Intersections: Theory, computation and experiment INTERSECTIONS

Thetgry, Ctamputation and Expovisiont

(World Scientific, Singapore, 2004 & 2011) s R L AT




The noncrossing rule and its generalization

J.v. Neumann & E. Wigner, Physik. Zeitschrift, 30 (1929) 467; E. Teller, J. Phys. Chem. 41 (1937) 109

Consider a quasi-degeneracy of potential energy surfaces; at a neighboring geometry the
electronic wavefunctions are written as

0, =C10,° +C; ¢,
(with the functions ¢,° and ¢,° from the reference geometry). The potential energies V,

result from solving TRY H 5
[ wte e )[ 1j:o with H; =< ¢?|Ha |¢? >

H12 H22'VJ_r C,
H,, + H Hy, -Hy, Y
One has: Vo= \/(“Tzzj +Hp,
Degeneracy requires: H,=H,, and H, =0,

I.e., in general the variation of two parameters.

==> In diatomic molecules no curve crossing of states with the same symmetry.
For n nuclear coordinates:

Dimension of subspace of degeneracy = n-2..



Potential 4

Energy Branching Space Coordinate

X,X, (2D - 1D)

Double cone

L

X3 Intersection Space Coordinate

The conical intersection hyperline traced out by a co-ordinate X, plotted in a
space containing the co-ordinate X, and one co-ordinate from the degeneracy-
lifting space X, X,
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B.5) The theorem of Jahn and Teller

Theorem (1937):

"Any molecule wn a spatially degenerate electronic
state is unstable unless the degeneracy is accidental
or the molecule is linear.’

Or alternatively:
"Any non-linear molecule undergoes distortion when
its electronic state 1s degenerate by symmetry.’

Remarks:

-Spin degeneracy is not considered.

-When the degeneracy comes from an orbital that con-
tributes weakly to the bond, the distortion will be small.

In other words:

‘At the equilibrium geometry of a non-linear molecule
the electronic state cannot be degenerate by symme-
try.’

Formal:

The instability comes from linear terms of the potential
energy matrix, which are missing in the case of linear
molecules.
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Proof:
We will point out here just the basic ideas.

Principle: (Group theory)

Let E, be the energy of the equilibrium geometry in a
degenerate electronic state, i.e., the geometry is opti-
mized with respect to the totally symmetric modes:

Hop] = Eo¢] (eg. 1<1<3)

where H, and ¢} are the Hamiltonian and the wavefunc-
tion of the system, respectively, in the high-symmetry
situation.

Let us consider a small displacement, 0(),, along the
non-totally symmetric modes:

H(6Q,) = Ho+ H, - 0Q, + O((SQ?)
E(6Q,)=E,+E,-0Q, + O(5Q%
with
det [(@7|Hr|dy,) — Erdym| =0

that is, F, are the eigenvalues of this secular equation.
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The energy correction is negative for 0Q), — —0Q),.
The first-order contribution yields instability. It van-
ishes when all the matrix elements are zero. Using
the symmetry selection rules, the matrix elements are,
therefore, non zero when:

(T'(¢°) X T'(¢%))sym X T'(Qr) D T4y

where sym refers to the symmetrized direct product.

Group theory shows that the symmetrized direct prod-
uct, (I'(¢?) xT'(¢°) ) sym, also contains non-totally symmetric

representations.

Jahn and Teller (1937):

In all molecular point groups, except for Cy, and
Doy, there are non-totally symmetric modes that are
contained in the symmetrized direct product of any de-
generate irreducible representation.

Proof: Enumerative!

One considers the minimum number of equivalent points
for all topologically distinct realisations of a point group
and its irreducible representations.
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Examples:

1. Linear Molecules, Cwoy and Doop: [5]

For all the degenerate irreducible representations,

E(=1I), Es(=A),--- . F —
1(=10), Bxy(= A), - -+, E, T

an;. om. (Er)y,= A1+ Eg P42 A

Let us consider the irreducible representation correspond-
ing to the bending mode:

['(Q2) = Ei(=1I)

so that (Ex).,x T(Q2) 2 T4, =
no linear coupling terms are possible.

2. Planar Xy-systems, Dyp:

Two doubly-degenerate irreducible representations,

g)sy Alg + Big + Bag

The following vibrational mode transforms like By,.

[}
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3. Planar X3-systems, Dsp;:

Two doubly-degenerate irreducible representations

(E/>2 — <E//)2 — A/—|— E/

sym

The following normal mode transforms like E’.

SANANSE

A & /

Qy Qx

Comments:

Most of the Jahn-Teller active modes are degenerate,
ct., Ds3,. The tetragonal point groups are, however,
exceptions: Cy, Cyy, Cup, Dy, Dyy, Sy, Doy. For them.,
there are non-degenerate modes that are Jahn-Teller
active. The latter is due to the symmetry selection rules
and not to the lack of degenerate normal modes.
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B.6) The F ® e Jahn-Teller effect

a) The E ® e Hamiltonian:

As a starting point, the common case will be consid-
ered, i.e., a three-fold axis in a (', or a D3, point group.
The simplest system to think of would be a triatomic
molecule in an E electronic state, whose atoms are lo-
cated at the corners of an equilateral triangle. For ex-
ample, the H3, Liz or Nas molecule.

2 Y

AN

[\

In such a molecule, as also in NHj3 or BFj3, there is
a degenerate vibrational normal mode of E symmetry.
The components transform like (x,y) and they will be

hereafter denoted as (@, @y)-
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In this situation it is convenient to use polar coordinates
in the x,y plane.

Gy =p cosy, Q,=psiny
Next, we are going to define the complex coordinates,

Q-i— and Q—;
Q. =Q,+1iQ, = p (cosy +isiny) = p e

—1

Q- =Q, —iQy=p (cosy —isiny)=pe X

Let us now consider the effect of the C5 operation on

the coordinates, that is, a 23” rotation.

Cg@x_COS< )Qx_Sin< )Qy

so that

C3 Q). = cos (3) Q. —sin (—) @y

and also,
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A (27 /3) rotation yields the multiplication of the com-
plex coordinates with a complex phase factor e(=F)

We can express the transformation in a matrix form as

G+ ) _ e 0. @+
C3<@)‘< : >(@)

The components of the electronic states transform also
like (x,y) and will be denoted here as ®,, ®,. As done
for the nuclear coordinates, we define also a set of com-
plex functions:

1
O, = % (B, +iD,), D =— (D, —iD,)

(The factor 1/4/2 comes from the fact that both sets,
®,, &, and ¢, O_, must be normalized.)

A rotation by 27 /3 yields,

ng)j: — 6:*:2%/3 (I)i

)+ and ® are the most suitable coordinates and func-
tions to use, since they are adapted to the symmetry of
the problem.
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Let us consider now the matrix elements of the electronic
Hamiltonian in the @4 basis set up to second order in

the coordinates Q+. We have:

/ dr ©*° Hy 9, = WO +wlQ, + whq_

1 1
+§WQQ+Q+ + §W£2_>Q_Q_ + w200

By applying C3 to this equation, the left side is multi-
plied by

(6+2m‘/3> o273 _

since H,; 1s invariant. Thus the left side is also invariant.
On the right side, all the W's, for which the combination
of the @'s is not invariant, have to vanish, i.e.,

wd =w =w? =w? =g

So that:

/ dr ©*° Hy &% = WO 1 w2 Q,q_

and also

/ dx &% H, ¢ = WO + w?q.Q_

with the same coeflicients.



The off-diagonal matrix elements are:

60

1
/ de 0 H, @ = VO 1 v, +vIVo_ + §V+(2+)Q+Q+

1
+ §V_(2_)Q_Q_ + V20,0

Applying C'5 to the Lh.s. yields a factor

—2mi/3 —2mi/3 __ _—4mi/3 __ _+2mi/3
e —e = :

€ €

so that we finally get:
vO =y =y =y =g

l.e.

1
/ de & H, o =V + 5\/_(2_)Q_Q_

We have thus determined the non-vanishing coefficients.

Abbreviations:
WO = 0 (zero of energy)
W = ¢
iV o=k
AR

Finally, the electronic Hamiltonian in the ®4 basis set

1S:

=Y 1
Hel 9 Q+Q + (l{?Q + %QQ?F 0

)

or with Q.=peX, Q_=pe X
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0 kpe'X + LgpPe 2 )

w 2
|
Hel 14 + <l€p€ zx_|_ gp2 21x 0

This is a Diabatic Representation, where the electronic
Hamiltonian matrix, H,; is not diagonal.

The total ¥ ® e-JT Hamiltonian is formed by adding
the kinetic operator for the nuclear motion:

T__f 82 N 82
o 2\0Q2 T 02

In polar coordinates (p, x) T} reads as:

2
I, = _% <pappap aaXQ)

0 kpe'X + LgpPe )

— (T +%p%) 1 .
H <k+2p) +(kpezx_|_29p2€2w< 0

The term kpe'X is called linear JT-coupling.
The term %ger_QiX is called quadratic JT-coupling.
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b) The adiabatic potential energy surfaces
and wavefunctions:

The JT-Hamiltonian in the form specified above is the
easiest one from symmetry considerations and most suitable

for the calculation of spectra, but is not, however, too

descriptive. Therefore, for a better understanding of the
problems. we will consider also the adiabatic representation.

The adiabatic potential energy surfaces are obtained as
follows

)\ 7 1 .
_ _ X | A2 ,—21X
det(x* _)\> 0, x = kpe —|-29,0€
and:
M —z]* =0 — Ao = £|7]
Then,
W W : 1 9
Vig=5p" + Mo =5p" £ [kpe + Sgp7e ]

Vig = 50" % |kp + 590°|
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In most of the situations the quadratic coupling terms
are smaller than the linear ones. If we set g = 0, we ob-
tain the potential energy surfaces of the linear JT-effect:

Vipg = %PQ + kp

Within this approach the potential energy surface shows
a rotational symmetry, i.e, it is y-independent. This
surface is the prototype of a so-called conical intersection

of potential energy surfaces.

Including the quadratic coupling term we have:

Vig = %p2 + \/k2p2 + ig2,04 + gkp3cos(3x)

For small displacements, the p* term can be dropped
out:

Vie=%p" £k py/1+%p cos(3x)

By expansion of the square root:

Vie=4%p*tkp+1igp*cos(3x)

In the linear + quadratic JT-effect, the potential energy
surfaces have a threefold symmetry. The lower surface
has three minima and three saddle points.
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Coordinates and JT surfaces for X3 molecules
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For the calculation of the adiabatic wavefunctions and
the non-adiabatic coupling terms, we are going to con-
sider just the linear JT-effect. We have

0  kpeX A0
- _
5 (/@peix 0 ) 5= ( 0 )xg)

with  Ai=kp and Xy = —kp.

Obtaining the eigenvectors:

—kp  kpex s _ g
kpe™™ —kp sa )

—S11 + 62X821 = O

(a) )\11

—iq
S21 = € X811

With S11 — 1 6iX/2 — S91 = L €_iX/2.

V2 V2
(b) Ao
+kp /fpeix 812 B O
kpe_ix _|_kp 822 o
e X519+ S99 =0
and  sg = % e X/2; S12 = —% etix/2
we get,
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The adiabatic wavefunctions, CD%, are obtained from
the diabatic ones, ¢4, as,

G L ( e—z‘x_/2 efx/z)

5 e ix/2 ezx/2
l.e.,
1 | |
pod — <e_ZX/2<D++eZX/2CD_)
V2
1
pul = ( e_ZX/2<I>++eZX/2<I>_)
V2
. 1 1 .
Ustmg o \/5(@;[; +1 dy), d_ = ﬁ@x i ©,), we
get:
4! = cos (§)®$+sin (%)be
i 09 = _sin (%)Cbx—kcos (g)@y

[t is also interesting to analyze the dependence of the
adiabatic wavefunctions on y /2. When following a 27-loop
around p = 0, the adiabatic wavetfunctions do not trans-
form into themselves, but:

¢i(2m) = —3{(0)

oy'(2m) = —25%(0)
They transform again into themselves after a 4m-loop.
This is the general behaviour for two-dimensional conical
intersections.
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Finally, we are going to calculate the non-adiabatic
coupling operator A. Since S depends only on the y

angle, we have to consider just the term —2‘”?5’2 /OX*?:

(I)ad W _1 Zi q)ad q)ad
Tk(é)z—— . 0X <é)+(é)Tk
Pad 202 \ ige —1 Pyd Pyl

The non-adiabatic coupling operator A reads:

_1 ;9
_ w 4 76
A——|—2—p2 .6
/l/_ P
ox

Note that A diverges at p = 0.

RN

e

The BO-approximation breaks down in the JT case.
Therefore, the diabatic representation is more suitable.
The nuclear motion on the adiabatic surfaces V7 and V5
is strongly coupled. As a consequence, the vibrational

energy levels on the adiabatic energy surfaces have no
longer physical meaning.
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Vibronic Line Spectrum for an A — E transition

with strong coupling.
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Figure 1. Exact JT line spectra and band shape curves. The band shape curves are
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