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Modeling carrier density dependent charge transport in semiconducting carbon nanotube networks
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Charge transport in a network of only semiconducting single-walled carbon nanotubes is modeled as a
random-resistor network of tube-tube junctions. Solving Kirchhoff’s current law with a numerical solver and
taking into account the one-dimensional density of states of the nanotubes enables the evaluation of carrier density
dependent charge transport properties such as network mobility, local power dissipation, and current distribution.
The model allows us to simulate and investigate mixed networks that contain semiconducting nanotubes with
different diameters, and thus different band gaps and conduction band edge energies. The obtained results are in
good agreement with available experimental data.
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I. INTRODUCTION

Networks of single-walled carbon nanotubes (SWNTs) ex-
hibit very high charge carrier mobilities [1–5] while also being
flexible and stretchable [6,7]. They can be processed from
solution at low temperatures, which makes them attractive
candidates for printed and flexible electronics [8,9]. SWNTs
are characterized by their chirality vector (n,m), which
describes the direction of rolling up a virtual graphene sheet to
form a nanotube and the resulting diameter [10]. The chirality
vector (or ‘chirality’) of a nanotube determines its electronic
properties, such as being metallic or semiconducting, the
band gap of semiconducting SWNTs, and their distinct one-
dimensional density of states (DOS). As-grown SWNT raw
material contains about one third metallic nanotubes, which
cause high off currents and limited current modulation in field-
effect transistors with dense SWNT networks. However, in line
of recent advances toward the separation of semiconducting
from metallic SWNTs [11–15], it is now possible to obtain
semiconducting SWNT networks with purities of more than
99.9%. This progress has enabled the fabrication of field-effect
transistors with excellent performance parameters, such as
high on/off current ratios and on-conductances [3,16,17]. The
availability of purely semiconducting SWNT networks also
raises new questions about the impact of network properties on
charge transport [18–21]. While it is possible to remove almost
all of the metallic nanotubes from a mixture of SWNTs, the
remainder often consists of many different semiconducting
chiralities with different diameters and thus band gaps. The
precise influence of network composition in terms of SWNT
diameter distribution is still unclear but has implications for
the device performance of field-effect transistors, as recent
experimental data show [22].

While charge transport in a single, pristine nanotube
is well understood, a universal description of transport
in SWNT networks and especially mixed semiconducting
networks is still lacking. Temperature-dependent mobility
and conductivity measurements on dense SWNT networks
clearly show thermally activated transport that might be
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described by the extended variable-range hopping (VRH) or
fluctuation-induced tunneling (FIT) model [23–25]. Although
fitting mobility data to these models does not provide a
conclusion on the microscopic transport mechanism, they
suggest that SWNT networks can be treated as disordered
percolating systems [26–34].

Several experimental studies have shown the influence of
nanotube length and network density on device performance
[18,19]. Others investigated charge transport on a microscopic
scale with, for example, conductive atomic force microscopy
(c-AFM), and focused especially on segment and junction
resistances. They found values of around 10 k�μm−1 for
nanotube segments and 102–105 k� for junctions [29,35–40].
Most of these experiments investigated the role of metallic
nanotubes within networks and the highly resistive Schottky
barriers between metallic and semiconducting nanotubes.
Only a couple of studies reported basic doping dependent
measurements of junction resistances in networks and found
lower resistances with higher carrier densities [39,40].

From a theory perspective, SWNT networks have been
modeled as two-dimensional [26,29,31,32], two-dimensional
layered [27,28], or three-dimensional [34] networks of con-
ducting sticks or hollow cylinders. The overall conductivity
of these networks was calculated via Kirchhoff’s law or with
circuit simulation tools, such as SPICE [31,32,34], in which
nanotube segments were described as resistors and junctions
as resistors and/or diodes (e.g., for Schottky barriers). The
analysis generally focused on geometric network parameters,
such as SWNT length distribution, nanotube density, metallic-
to-semiconducting SWNT ratio, and alignment angles. Similar
to most experimental studies, no charge carrier density
dependent analysis was applied. Instead fixed resistance values
for the different components of the network (segments versus
junctions, metallic versus semiconducting nanotubes) were
assigned. Only one recent study has taken the intrinsic
properties of SWNTs, such as the DOS, into account to
determine segment resistances in a network [34].

For the application of semiconducting SWNT networks in
field-effect transistors the charge carrier density dependent
transport properties are crucial, as the carrier density is varied
over orders of magnitude from the off to the on state via the
gate voltage. Given that the properties of a nanotube network
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are no longer determined by residual metallic nanotubes, the
composition of mixed semiconducting SWNTs with different
diameters and band gaps becomes important. We have recently
shown via electroluminescence spectra of light-emitting field-
effect transistors based on mixed semiconducting SWNT
networks that charge transport depends strongly on carrier
density and the specific network composition [22]. The intrin-
sic DOS of individual SWNT chiralities may not only affect
the transport within the nanotubes [34], but also the charge
transfer across SWNT junctions, which is often considered
to be the limiting transport step. A charge carrier density
and chirality dependent description of junction resistances and
overall mobilities in networks of semiconducting SWNTs is
thus highly desirable.

Here, we address these issues, by treating a thin SWNT
layer as a random network of one-dimensional sticks in a
two-dimensional periodic box, based on models and solutions
for disordered systems [41,42], such as organic semicon-
ductors [43,44]. Our main goal is to develop a model that
allows us to simulate the charge carrier density dependent
transport properties (mobility, local power dissipation, current
distribution) of mixed networks of semiconducting SWNTs
with different length distributions, energetic disorder and, most
importantly, different chiralities and thus DOS. In Sec. II we
introduce a model that describes the SWNT layer as a network
of random resistors of tube-tube junctions, taking into account
the absolute DOS of each nanotube. In Sec. III we will discuss
the basic results of the model and the impact of various network
parameters, such as the magnitude of the energetic disorder, the
SWNT length, and the SWNT density, on transport properties.
In Sec. IV we visualize the current flow and power dissipation
in these networks, before we compare our simulation results
to experimental data in Sec. V, demonstrating the applicability
of our approach to realistic mixed networks.

II. MOBILITY MODEL

A. Charge transport modeling

The charge transport within a SWNT network can be
divided into two types: (i) transport along an individual SWNT
and (ii) transport across SWNT-SWNT junctions. Single nano-
tubes exhibit carrier mobilities of 1000 to 10 000 cm2 V−1 s−1

at room temperature and even ballistic transport over distances
up to a micrometer [36,45]. Hence, we can assume that the
limiting step in a dense network is the charge transfer across
the junctions. This assumption is corroborated by experimental
current-voltage measurements along single nanotubes and
across SWNT-SWNT junctions [35,39,40]. Thus, we will
neglect the resistance of the SWNT segments between the
junctions and assume that charges move instantaneously
between two junctions along a given SWNT segment. With
this assumption, the nanotube network becomes a network of
SWNT-SWNT junctions (see Fig. 1). Since SWNT networks
experimentally show thermally activated transport similar to
other disordered systems [24,25], we decided to describe
the charge transfer across those junctions as a hopping
process. We apply a master equation approach, resulting in
a random-resistor network valid at low electrical field, where
the junctions are modeled as bond conductances Gij between
single nanotubes acting as sites/nodes [41–44].

FIG. 1. 2D Network of 1D sticks as a geometric model for a
random SWNT network (gray). The magnified inset (left) illustrates
the junctions (red) between single nanotubes (blue) and their
conversion into a random resistor network (right inset) with junctions
acting as resistors and SWNTs as nodes.

The bond conductance between two sites in a disordered
system of sites, over which charges can hop, in the case of a
small electric field F and in a mean field approximation, is
generally given by [44]

Gij (EF ,Ei,Ej ) = e2 · ω
symm

ij

4kBT · cosh
(

Ei−EF

2kBT

) · cosh
(Ej −EF

2kBT

) (1)

with EF the Fermi energy, e the elemental charge, kB the
Boltzmann constant, T the absolute temperature, ω

symm

ij a
symmetrized hopping rate between sites i and j , and Ei and
Ej the local energies of a charge residing on sites i and
j . The conductance of the system can then be calculated
by constructing the random-resistor network of these bond
conductances and solving Kirchhoff’s equations. This classical
approach has to be adjusted in order to account for two
major differences between SWNT networks and conventional
disordered systems:

(i) In conventional disordered systems (e.g., organic semi-
conductors), the Coulomb charging energy for two or more
charges residing on the same site is so high that double or
higher occupancy can be neglected. However, SWNTs have a
very low Coulomb charging energy of around 0.9 meV μm−1

[46], so that (at room temperature) several charges can reside
on one SWNT.

(ii) In conventional disordered systems, a single energy Ei is
assigned to each site i. A Gaussian or exponential distribution
is typically attributed to those site energies to account for the
intrinsic energetic disorder. A single SWNT, however, does not
have a single energy level but rather an intrinsic DOS with van
Hove singularities at the bottom of each subband (see Fig. 2).
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FIG. 2. Density of states (first van Hove singularity, first conduc-
tion subband) of a single (6,5) SWNT as calculated within the tight
binding approximation including trigonal warping effects (circles).
[47,48] The fitted first van Hove singularity (gray line) is used for
modeling the SWNT network. To include energetic disorder, the band
edge of each SWNT is shifted by a random energy drawn from a
Gaussian distribution.

In order to account for the differences (i) and (ii) we treat the
states in each SWNT as sites with an energy distribution given
by its DOS. The Pauli principle forbids double occupancy of
a state in each SWNT in the same way as the high Coulomb
energy forbids double occupancy of a site in a conventional
disordered system. Neglecting the charging energy of the
SWNTs, we can introduce a conductance G

jun

ij between two
SWNTs i and j connected via a junction ij by modifying
equation (1) to

G
jun

ij (EF ) =
∫∫

Gij (EF ,Ei,Ej ) · Di(Ei)·Dj (Ej )dEidEj ,

(2)

where Di(E) and Dj (E) are the DOS of SWNT i and j ,
respectively, and Gij (EF ,Ei,Ej ) is given by equation (1),
where ω

symm

ij is now a symmetrized hopping rate between
states with energy Ei and Ej in SWNT i and j , respectively.
As we have no specific knowledge about the details of
charge transfer between states in the two nanotubes, we
use a simplified Miller-Abrahams approach [41], leading to
ω

symm

ij = ω0 · exp (−|�Eij |/2kBT ) [44], with ω0 a hopping
prefactor determined by the charge-transfer integral between
the states and �Eij the energy difference Ej − Ei between the
states j and i. The introduction of a range of different SWNTs
with different band gaps and DOS is thus straightforward.

Using the above expression for G
jun

ij , we can consider an
arbitrary network of SWNTs, solve the coupled Kirchhoff’s
equations for current conservation at each node using a
numerical solver, and obtain the network current. From this,
the equivalent conductance of the network and therefore the
mobility of charge carriers in the network can be calculated.

B. Computational solution

We first generate a random network of one-dimensional
interpenetrating sticks representing the SWNTs with a preset
density in a two-dimensional box (dimensions Lx and Ly)
via the Monte Carlo technique (see Fig. 1). Thus, random,
uniformly distributed coordinates for the center of mass and

angles for the direction of each SWNT are generated within
the simulation box. Treating the network as a two-dimensional
system is appropriate for two reasons: (i) Up to a certain
surface coverage SWNT networks are quasi two-dimensional
except for the junctions. (ii) A two-dimensional approximation
is suitable for describing transport in SWNT field-effect
transistors, because the charge accumulation layer is only a
few nanometers thick.

Subsequently, a certain length and chirality (n, m) are
assigned to each SWNT according to predetermined distribu-
tions. In order to avoid problems with the periodic boundary
conditions (see below), the restriction that SWNTs neither
cross the line x = Lx nor y = Ly , nor both is imposed. Both
length and chirality are used to calculate the absolute DOS of
each SWNT. We then shift the conduction band edge by an
energetic disorder value, randomly generated from a Gaussian
distribution (see red dotted line, Fig. 2). For simplicity, we only
take into account the first subband (first van Hove singularity)
of the conduction band and neglect higher-lying subbands.
This is a realistic assumption for typical experimental charge
carrier densities in field-effect transistors [3].

Then, the junctions between intersecting SWNTs (see
Fig. 1, left inset) are determined. In order to reduce boundary
effects and obtain a rapid convergence with increasing box
size, we replicate the box in all directions by applying periodic
boundary conditions. The bond conductances between all
SWNTs i and j (across the junction ij ) are calculated using
equation (2).

Next, we solve Kirchhoff’s equations, taking into account
the periodic boundary conditions:

∑
i �=j

G
jun

ij · (Vi − Vj + �ij ) = 0, (3)

with

�ij =
⎧⎨
⎩

F · Lx, xj > Lx

0, 0 � xj � Lx

−F · Lx, xj < 0
, (4)

where F is the external electric field, applied in the x direction,
Vi the local electrostatic potential at SWNT i, Lx the length
of the simulation box in the x direction, and xj the x position
of tube j , defined as the position of its center of mass. The
biconjugate sparse matrix solver within MATLAB [49] is used
to calculate the local potentials Vi for different Fermi energies
and thus carrier densities. The latter are calculated from the
Fermi energies using the Fermi function f (Ei,EF ),

n(EF ) = 1

Lx · Ly

N∑
i=0

∫ ∞

−∞
Di(Ei) · f (Ei,EF )dEi (5)

with Ly the length of the simulation box in the y direction and
N the total number of sites within the box.

Finally, the desired network properties, such as the power
dissipation in all the junctions, the current densities, and the
charge-carrier mobility, can be calculated from the Vi’s and
the G

jun

ij ’s. The complete calculation and analysis is carried
out using an in-house developed MATLAB code.
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C. Limits of the model

Considering the assumptions and simplifications that we
used in our model for charge transport in a SWNT network,
there are a few (estimated) limits to the model:

(i) Our model is to be used only at high temperatures
(>90 K). When the thermal energy is similar to or lower than
the Coulomb charging energy, equation (2) can no longer be
applied as blockade effects become important.

(ii) Our model assumes negligible SWNT segment resis-
tances and thus may not be valid for very long SWNTs
with a significant resistance compared to the junction resis-
tances. Therefore, the model should not be applied to very
sparse networks with long SWNT segments between the
junctions.

(iii) As the junction resistances become smaller with in-
creasing charge carrier density and thus comparable to the seg-
ment resistances, the model may not be appropriate anymore.

(iv) For very high areal SWNT densities, the two-
dimensional box model for the random networks is no longer
valid, as the real SWNT film thickness will increase, resulting
in an overestimation of the amount of junctions in the model.
For such films a three-dimensional Monte Carlo model as
presented by Colasanti et al. [34] could be applied for the
generation of the network. In that case the computational costs
for solving Kirchhoff’s equations will increase considerably.

(v) Taking into account only the first van Hove singularity
of the DOS might become problematic for networks composed
of different SWNT chiralities when the band gaps of the
nanotubes differ by more than ≈500 meV. In that case the
second van Hove singularity of the SWNTs with the smaller
band gap might become important.

(vi) As we do not know the value of the prefactor ω0 in
the Miller-Abrahams hopping rate we cannot calculate the
absolute values of the carrier mobilities. We thus only draw
conclusions about normalized mobilities and their relative
changes with carrier density and other parameters.

(vii) Using a random resistor model to solve the master
equation approach is only valid in the approximation for low
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FIG. 3. Normalized mobility versus charge carrier density for a
network of (6,5) SWNTs without energetic disorder (simulation box:
20×20 μm2, SWNT length: 1.5 ± 0.9 μm, linear SWNT density:
7 μm−1). The dotted line is a guide to the eye.

electrical fields. Thus, the model is not applicable for high
lateral fields.

III. SIMULATION RESULTS

In the following, we will present several simulation results
on random SWNT networks of a single type of nanotube with
different parameters. This will demonstrate the capabilities
of our model. One of the major advantages of our model
with respect to previous simpler resistor models for carbon
nanotubes is its ability to determine the charge carrier density
dependence of the mobility. This dependence plays a crucial
role in field-effect transistors, where the carrier density is
directly tuned by the applied gate voltage. Given the inability of
our model to predict absolute mobilities (see previous section),
we present all network mobilities normalized to a maximum
value μ0. Figure 3 shows representative results for the charge
carrier density dependent mobility of a simple random SWNT
network, consisting of only (6,5) SWNTs (diameter: 0.757 nm,
band gap: 1.27 eV) without energetic disorder in a 20×20 μm2

simulation box at room temperature.
For very low carrier densities (<109 cm−2) the mobility

is nearly constant, showing a small drop before increasing
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FIG. 4. Network mobilities for different disorder strengths (sim-
ulation box size: 20×20 μm2, SWNT length: 1.5 ± 0.9 μm, linear
SWNT density: 7 μm−1): (a) Normalized charge carrier mobility
versus carrier density. (b) Peak mobility versus disorder strength.
Dotted lines are guides to the eye.
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to a maximum value around 1011 cm−2. For higher charge
carrier densities the mobility drops again due to subband
filling, which limits the conductance across the junction at high
carrier densities. This effect is exaggerated here because of the
absence of higher-lying subbands in the simulation that would
start to be filled in a real nanotube network. But overall these
results are in good qualitative agreement with experimental
data on semiconducting nanotube networks [3,50], which will
be discussed in Sec. V.

To obtain the results displayed in Fig. 3, the mobilities of ten
networks with different geometries and disorder configurations
were calculated and averaged. The standard deviation is
represented by the error bars. All of the following results were
obtained in this way. For simplicity and ease of comparison
of simulation results with different parameters we start by
considering networks of only (6,5) SWNTs. Mixtures of
SWNTs with different chiralities are investigated in Sec. V B.

A. Influence of energetic disorder

Experimental data on dense SWNT films reveal inhomo-
geneous broadening of their spectral features (absorbance and
photoluminescence peaks) at room temperature that is about
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FIG. 5. Network mobilities for different simulation box sizes
(energetic disorder: 0 meV, SWNT length: 1.5 ± 0.9 μm, linear
SWNT density 7 μm−1 and 15 μm−1): (a) Normalized peak mobility
for square boxes. (b) Normalized peak mobility for rectangular boxes
with constant box area. Dotted lines are guides to the eye.

20 meV larger than for the same SWNTs in dispersion [51,52].
The broadening is likely a result of dipolar disorder in those
films. In devices such as field-effect transistors, additional
dipolar disorder might be introduced by the substrate and
the gate dielectric [53,54]. We thus investigate the effect of
energetic disorder in this range on the carrier mobility of a
random network. Figure 4 shows the simulation results for the
carrier density dependent mobility and the maximum mobility
for various disorder strengths, defined as the standard deviation
of the Gaussian distribution of the shifts in the band edges,
ranging from 0 to 60 meV.

As generally expected for a disordered system, the carrier
mobility of the network drops with increasing disorder (see
Fig. 4). The peak mobility decreases almost linearly with
disorder strength in the analyzed range. The position of
the mobility maximum in Fig. 4(a) shifts to higher charge
carrier densities with increasing disorder and the peak shape
becomes more asymmetric. For high carrier densities beyond
the maximum in the mobility, all curves approach the same low
value. Independent of disorder strength, the final limitation
for the mobility in a SWNT network is subband filling, as
described above.
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malized mobility versus charge carrier density (without energetic
disorder). (b) Peak mobility, normalized to the mobility μ0 for
the minimum SWNT density, versus SWNT density for 0, 30, and
45 meV disorder strength. Dotted lines are guides to the eye.
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B. Influence of system size

We use a stochastic model for the generation of the SWNT
network and thus the system size influences the final results
obtained for the carrier mobility. In order to determine the
minimum system size required for obtaining reliable results
we investigated the effect of the size of the simulation box,
in conjunction with the linear network density and the length
distribution of the nanotubes.

1. Simulation box size

Figure 5 shows the dependence of the normalized peak
carrier mobility on the simulation box size for square boxes
and rectangular boxes with fixed area. Two main effects
are evident: First, the standard deviation of the mobilities
decreases with increasing box size [see Fig. 5(a)]. A higher
linear SWNT density (15 μm−1 versus 7 μm−1) also leads to
a reduction of the error bars.

Second, the use of shorter simulation boxes in the direction
of the electric field for a fixed box area results in a strong
increase in mobility [see Fig. 5(b)]. This is because in a very
short simulation box a few nanotubes could bridge the entire
box. The shorter charge transport paths through the network
increase the overall network conductance and mobility. In this

regime, the assumption that the SWNT segment resistance is
negligible compared to that of the junctions no longer applies.

We find that a box size of around 20×20 μm2 is sufficient
to obtain results with small error bars, while at the same time
avoiding an overestimation of the mobilities due to bridging
effects. We chose this box size for all simulations presented in
the following sections.

2. Network density

The SWNT density is an important parameter in device
applications. In general, a high density is desired in field-
effect transistors to reach maximum on-conductances. Figure 6
demonstrates the influence of the SWNT density on charge
carrier mobility for our simulations. Here, we chose to vary
the linear instead of the areal density, for two reasons:

(i) The experimental determination of the linear SWNT
density of a network is straightforward, in contrast to deter-
mining the areal density. No information about the SWNT
length or its distribution is needed to extract the linear density
from atomic force or scanning electron micrographs.

(ii) The linear SWNT density is used to calculate the
capacitance of the SWNT network and thus the effective
capacitance in a field-effect transistor in order to determine
the carrier mobility from current-voltage measurements [55].
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The comparison of the charge carrier mobility for different
SWNT densities reveals two trends. First, the mobility peak
position shifts to higher carrier densities for denser networks.
Second, the relative peak mobility increases linearly with
increasing SWNT density. While the absolute peak mobilities
decrease with increasing disorder (see Fig. 4), the relative
increase of the peak mobility with increasing SWNT density
is independent of the disorder strength. The increasing peak
mobility is a simple geometric effect for a two-dimensional
network. This should not be the case for a more realistic
three-dimensional network [34]. The calculated mobility for
high network densities is probably too high, as the amount
of junctions and therefore pathways is overestimated. Further-
more, for experimental mobilities in field-effect transistors
the limited thickness of the accumulation layer must be
considered. Considering the experimental data [21,56,57], we
conclude that the presented two-dimensional model should not
be applied for SWNT densities larger than 20–30 μm−1.

3. Length distribution

Different SWNT source materials and dispersion tech-
niques yield different length distributions of SWNTs, which
are observed to have a large impact on device performance
[15,18,19]. Using our model, we can analyze the impact of both
average length and length distribution on the network mobility
for a constant linear SWNT density (see Fig. 7). For those
simulations, we set the energetic disorder to zero, because no

specific influence was expected (see Sec. III B 2). We used a
gamma distribution as the length distribution function, because
it fits the experimental data well [15].

The length dependence of the peak mobility shows the
following trends. The broader the length distribution and
the longer the nanotubes, the higher is the carrier mobility
[see Figs. 7(d)–7(f)], which was expected. However, the
dependence in both cases is superlinear. Note that the data for
constant mean/standard deviation ratios [Fig. 7(f)] is plotted
with a logarithmic vertical axis. Changing both SWNT mean
length and standard deviation leads to a substantial change of
the charge carrier mobility. Hence, the SWNT length distri-
bution is clearly a critical parameter for device applications
that require high mobilities and on-conductances. Similar
trends have also been observed experimentally for mixed
metallic/semiconducting networks [58]. Interestingly, the car-
rier density dependence of the mobility [see Figs. 7(a)–7(c)]
reveals a trend that is opposed to the trend observed for
different linear SWNT densities. The peak mobilities shift
to slightly lower carrier densities for broader distributions and
longer nanotubes as the areal SWNT density decreases for
longer tubes at constant linear density.

IV. VISUALIZATION OF CURRENT PATHS

The previous examples have shown that our model can
reproduce the typically expected and observed correlations

FIG. 8. Histograms of the junction power dissipation (P ) distribution (with color-coded visualization as insets) for different network
densities and energetic disorder strengths (see subfigure titles). The SWNT length distribution is 1.1 ± 0.5 μm. The carrier densities are
those at the peak mobilities (na = 1.0×1011 cm−2, nb = 1.3×1011 cm−2, nc = 1.8×1011 cm−2, nd = 2.5×1011 cm−2, ne = 3.1×1011 cm−2,
and nf = 4.5×1011 cm−2).
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FIG. 9. (a) Normalized charge carrier mobility versus charge carrier density. The dotted line is a guide to the eye. (b)–(f) Visualization of
current paths through a network with 45 meV energetic disorder at different charge carrier densities n as labeled in (a). The 10% of SWNTs
that carry the most current in the network have been colored (other SWNTs are light gray) and given a thickness proportional to the logarithm
of the current (in a.u.) they carry. Simulation box sizes are 20×20 μm2.

between SWNT network mobilities and basic network parame-
ters. But the model also allows us to visualize current paths and
power dissipation within a network and to identify bottlenecks
for charge transport. Figure 8 shows histograms and maps of
the power dissipation in the junctions of SWNT networks with
different densities and energetic disorder strengths. Again, for
simplicity we analyze only networks of (6,5) SWNTs and we
apply a fixed length distribution of 1.1 ± 0.5 μm.

Similar to other percolating resistor networks, most of the
power is dissipated in only a few resistors, i.e. tube-tube junc-
tions. Note that the horizontal power (P ) axis in the histograms
is logarithmic. Figures 8(a)–8(c) visualize the statistics of the
power dissipation in (6,5) SWNT networks without energetic
disorder at low nanotube densities (4–7 μm−1), close to
the percolation threshold. The carrier densities are those
at which the mobility peaks. We observe that the power
dissipation becomes more homogeneous for denser networks.
With increasing network density we are moving away from
the percolation threshold, so that the network becomes more
interconnected and the fraction of junctions in which almost no
power is dissipated decreases (see marked fraction in Fig. 8).
At the same time, the fraction of junctions in which most of
the power is dissipated hardly changes (for details see below).

The introduction of energetic disorder of 45 meV [see
Figs. 8(d)–8(f)] makes these trends more pronounced. The
power dissipation distribution becomes broader, i.e., more
inhomogeneous. In particular, the number of junctions with
low power dissipation for the case of the low-density network

(4 μm) is much larger. Energetic disorder creates network
areas that carry only a small part of the current, with a clear
effect on the overall network mobility, as shown in Figs. 4(a)
and 4(b).

In addition to visualizing the power dissipation distribution
in the junctions, we can also visualize the distribution of
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FIG. 10. Experimental [52] and simulated normalized mobility
versus charge carrier density for (6,5) SWNT networks. Simulated
results are given for the cases without energetic disorder and an
energy disorder of 45 meV. The SWNT density was estimated from
the experiments to be 30 μm−1. Dotted lines are guides to the eye.
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current among the SWNTs themselves. By this means we
can identify the current pathways through the network.
Figures 9(b)–9(f) show, for an energy disorder of 45 meV
and at different carrier densities, as indicated in Fig. 9(a),

color coded representations of those SWNTs in the network
that carry most of the current. Note that, due to the applied
periodic boundary conditions, the current (and thus also the
power dissipation) at the edges of the box (in the field direction)
is fixed and therefore larger than in the rest of the network.
Figures 9(b)–9(f) clearly indicate that most of the current
is actually carried by only a fraction of SWNTs within the
network forming low-resistance pathways. This effect was
also observed experimentally [20,22]. The current pathways
slightly change with increasing charge carrier density. This
change is caused by SWNTs with a band edge that is shifted to
higher energy by the energy disorder, so that they only become
accessible at high carrier densities and subsequently change
the map of current pathways.

V. COMPARISON TO EXPERIMENT

In order to verify the practical applicability of the above
established model, we now apply it to experimental SWNT
networks and compare the results to available charge transport
data. We start with a qualitative and quantitative comparison
of modeled and measured charge carrier dependent mobilities
of networks of a single chirality of nanotubes [20,52], and then
turn to a mixed network with different chiralities [22].

A. Networks of a single SWNT type

As an experimental test system we again choose (6,5)
SWNTs. They can be produced and dispersed in large
amounts and with high chiral purity by polymer wrapping
[15]. We compare experimental results of aerosol jet printed
(6,5) SWNT networks in field-effect transistors [52] to our
simulation of dense networks (30 μm−1). The experimental
charge carrier density dependent mobility was extracted from
the transconductance of the channel using the measured
on-state capacitance. The charge carrier density was esti-
mated from the on-state capacitance multiplied by the gate
overdrive.

Figure 10 shows the normalized carrier density dependent
mobilities for the aerosol jet printed SWNTs together with
simulated results. The experimental data show the previously
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FIG. 12. Comparison of experimental [22] (open symbols) to simulated (closed symbols with error bars) results for the share in the current
of each nanotube species in a mixed network of five chiralities: (a) (7,5) and (8,6), (b) (7,6), and (c) (8,7), (9,7). Dotted lines are guides to the
eye.

046003-9



STEFAN P. SCHIEßL et al. PHYSICAL REVIEW MATERIALS 1, 046003 (2017)

reported mobility maximum [3,50], which occurs due to band
filling of the first subband, at carrier densities of around
2–3×1012 cm−2. A comparable behavior is found for the
simulated mobilities. By introducing energetic disorder, the
peak position shifts toward the peak in the experimental data.
The presence of energetic disorder as well as shallow traps can
be expected due to the substrate, the dielectric, or impurities.
Overall, the results are in good qualitative, but not quantitative
agreement. A possible reason for the quantitative mismatch
might be an incorrect estimate of the SWNT density. As the
networks resulting from aerosol jet printed devices are rather
thick, the density of around 30 μm−1 used in the simulations
might underestimate the experimental value. Using higher
SWNT densities would lead to a shift of the mobility maximum
to higher carrier densities, as shown in Sec. III. However, at
such high densities the model may become unreliable, as the
film can no longer be treated as a two-dimensional network
(see Sec. II C).

Next, we compare experimental data for the dependence
of the mobility on the mean nanotube length and the length
distribution to the predictions of our model. Here we use
data by Malhofer et al. [20] on (6,5) SWNT networks with
different mean lengths embedded in an insulating polymer
matrix. Experimentally, small changes in the SWNT length
distribution (1.1 ± 0.5 μm vs 1.3 ± 0.6 μm) were found to
have a strong impact on the effective mobility, which we try
to reproduce with our model.

Figure 11 shows the experimental (a) and simulated (b)
dependence of the carrier mobility on the density of the
SWNT network for two different length distributions, based
on the given network parameters. The network density in
the simulations was increased according to the experimental
concentration of SNWTs in the polymer matrix given in
weight percent. With increasing SWNT concentration (den-
sity) and length, the mobility increases, as expected. Both the
experimental and simulated data show that the SWNT length
distribution has an unexpectedly large impact on the charge
carrier mobility. A variation in the length distribution by only
18% (a few hundred nanometers) alters the mobility by a factor
of 2–3. The impact of this variation even increases for higher
SWNT densities. As shown in Fig. 7(d), a broader length
distribution with a few longer nanotubes can significantly
change the network mobility. These results demonstrate that
our model is able to qualitatively describe the charge transport
in networks of a single type of nanotubes.

B. Mixed networks

The most important motivation for the development of the
presented model was the description of charge transport in car-
bon nanotube networks that contain many different species of
semiconducting SWNTs. Different chiralities exhibit different
diameters, band gaps, and DOS. These mixed networks are of
special interest, as they are most commonly used in devices. In

FIG. 13. (a) Comparison of experimental [22] to simulated carrier density dependence of the mobility in a mixed network of five chiralities
(density: 10 μm−1, length distribution: 1.0 ± 0.5 μm). Dotted lines are guides to the eye. (b)–(f) Simulated current maps at the carrier densities
indicated in (a), with nanotubes that carry more than the average current per tube highlighted [red: (9,7) SWNTs, black: (7,5) SWNTs]. Gray
lines represent SWNTs that carry less than the average current. The thickness of each drawn nanotube is proportional to the relative current
Ii/Iavg it carries.
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order to understand the impact of the network composition on
device performance, it is necessary to include different SWNT
chiralities, with their conduction band edges and DOS in the
simulations.

As a proof of concept we investigate a particular network
containing five different nanotube species and compare the
simulation results to previous experimental results obtained
for these networks [22]. The five nanotube chiralities are
(7,5) (19%, diameter 0.83 nm, band gap 1.21 eV), (7,6) (21%,
diameter 0.89 nm, band gap 1.11 eV), (8,6) (28%, diameter
0.97 nm, band gap 1.06 eV), (8,7) (26%, diameter 1.03 nm,
band gap 0.98 eV), and (9,7) (6%, diameter 1.10 nm, band
gap 0.94 eV). The experimental network composition was
determined from absorption measurements using established
absorption cross sections for each SWNT species. The current
distribution within the network was deduced from electrolu-
minescence spectra recorded at different gate voltages (carrier
densities) from light-emitting field-effect transistors based on
these networks, taking into account the photoluminescence
yield of the different nanotube species and energy transfer
within the network. For further experimental details we refer
to Rother et al. [22]. The experimentally determined share
in the current carried by each nanotube species as a function
of carrier density is plotted in Fig. 12 (open symbols). Note
that the current share is not proportional to the abundance of
each nanotube species in the network. For example, the (9,7)
nanotubes that make up only 6% of the network carry more
than 40% of the current. As the charge carrier density increases,
the nanotubes with larger band gaps start to contribute more
to the charge transport [see Figs. 12(a)–12(b)], while the
current-share of chiralities with a smaller band gap decreases
[see Fig. 12(c)].

We performed simulation for this network with the ex-
perimentally determined network properties, assuming an
energetic disorder of 45 meV, and calculated the current share
of each nanotube species, as shown in Fig. 12 (filled symbols
with error bars). The disorder strength and the charge carrier
densities are the only free parameters in the simulations. All
other parameters are given by the experiment. The experi-
mentally determined charge carrier densities might deviate
somewhat from their true values due to assumptions about the
effective device capacitances, charge accumulation behavior,
and threshold voltages. The experimental and simulated values
of the current shares and their dependence on carrier density
agree remarkably well. In addition to the current shares,
we find a reasonably good agreement for the carrier density
dependent mobility [see Fig. 13(a)]. Hence, our model is able
to describe the charge transport properties of realistic networks
containing several SWNT species quite well.

In our previous work we could only qualitatively describe
the experimental data, using an equilibrium charge accumu-
lation model [22], which lacked the ability to account for the
specific current pathways followed by the mobile charges.
With the present model we have overcome this limitation
and can now quantitatively describe the steady state current
distribution and visualize it for different carrier densities.
Figures 13(b)–13(f) show the currents carried by two selected
chiralities within the network, namely the (7,5) SWNT (largest
band gap) and the (9,7) SWNTs (smallest band gap). Only
nanotubes that carry a current larger than the average current

per nanotube are highlighted and the line thickness scales with
the current carried by a nanotube. For the lowest carrier density
[Fig. 13(b)] the (9,7) nanotubes (red) dominate the charge
transport, although their abundance in the network is only 6%.
For increasing charge carrier density [Figs. 13(c)–13(f)], the
relative current carried by the (9,7) tubes decreases, while an
increasing number of (7,5) SWNTs (black) contribute to the
current. Hence, the presented charge transport model not only
reproduces the experimental observations for mixed SWNT
networks well but also enables deeper insights into the charge
transport pathways and current distribution in such complex
networks.

VI. CONCLUSION

We presented a model for the simulation of charge trans-
port in two-dimensional semiconducting single-walled carbon
nanotube (SWNT) networks that are treated as a random
resistor network of SWNT-SWNT junctions. We neglected
the resistance of the SWNT segments and modified the
conventional random-resistor network approach for disordered
systems by including the density of states (DOS) of the
individual SWNTs. The model enables simulation of charge
carrier density dependent mobilities for networks of a single
nanotube chirality as well as networks containing nanotubes
with different diameters and band gaps, with the additional
possibility to include energetic disorder. The simulated charge
carrier density dependencies of the network mobility are
in good agreement with experimental data on networks of
SWNTs with different length distributions and on mixed net-
works of different nanotube chiralities. In mixed networks the
simulated shares in the current carried by different nanotube
species and their carrier density dependence agree remarkably
well with the experiment. Furthermore, the simulations enable
visualization of power dissipation and current distribution
within simple and complex networks. The developed model is a
powerful tool to design and investigate semiconducting SWNT
networks, taking into account network parameters such as the
nanotube density, the chirality composition of the network,
and the length distribution of the nanotubes. Applying this
model should facilitate rational prediction and improvement
of the performance of practical nanotube network devices like
field-effect transistors.
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