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1
Introduction
The editors

Quantum dynamics simulations are now established as an essential tool

for understanding experiments probing the nature of matter at the molec-

ular level and on fundamental time-scales. This is a relatively recent de-

velopment and for many years the methods of choice were based on time-

independent calculations, describing a system in terms of its eigenfunctions

and eigenvalues. This book is about the multi-configuration time-dependent

Hartree method, commonly known by its acronymMCTDH, a method which

has played a significant role in the upsurge of interest in time-dependent

treatments by extending the range of applicability of what are often called

wavepacket dynamics simulations.

The book will cover the theory of the method, highlighting the features that

enable it to treat systems not accessible to other methods. Details in partic-

ular will be given on the implementation strategy required. Chapters will

then detail extensions of the basic method to show how the theory provides

a framework to treat systems outside the original aims and to combine dif-

ferent methods. In the final section examples of calculations are given. As

the method is completely general, and has been applied to a range of prob-

lems, the result is a snapshot of the state-of-the-art in the study of molecular

dynamics.

To describe a (non-relativistic) molecular system one needs to solve the

Schrödinger equation, which in its time-dependent form reads

ih̄
∂Ψ

∂t
= ĤΨ . (1.1)

Unfortunately this equation is impossible to solve for more than 2 particles,

i.e the hydrogen atom and the field of theoretical chemistry is dominated by

developments of methods, numerical and approximate, that provide solutions

that can be used to treat atoms and molecules.

A key development in making this problem tractable is the separation of

nuclear and electronic motion through the Born-Oppenheimer approxima-

tion [1–3]. This allows us to imagine our molecular system as a set of nu-

clei represented as point masses moving over a potential energy surface (PES)
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provided by the electrons: the electrons follow the much heavier nuclei, ad-

justing instantaneously as the nuclei change conformation. This approxima-

tion works extremely well. It does, however, break down in certain situations

when two electronic configurations strongly mix with dependence on the nu-

clear conformation [4]. The nuclei then must be imagined as moving in a

manifold of coupled electronic states, each associated with a potential energy

surface.

The PES are obtained by solving the time-independent form of the Schrödin-

ger equation applied only to the electrons and treating the nuclei as static point

charges. This is the field of electronic structure theory, or quantum chemistry

as it is often called. Quantum chemistry is a mature field of research with

a number of general-purpose computer programs available such as Gaus-

sian [5] and Molpro [6]. These programs are able to solve the electronic struc-

ture problem for a nuclear configuration using a range of methods. They can

also provide an analysis of molecular properties at that molecular geometry.

Much of chemistry can be described by an analysis of the critical points

on the PES: minima represent stable nuclear configurations and saddle-points

transition states connecting them. In the field of photochemistry features such

as conical intersections and avoided crossings where neighboring states inter-

act are also important. The nuclear geometries and relative energies of these

points can then be used to build up a picture of a reaction in molecular terms.

Local analysis of these critical points can further provide information. For

example frequencies related to vibrational spectra can be calculated from the

Hessian matrix. These can all be provided by the quantum chemistry pro-

grams.

The field of molecular dynamics studies the motion between these critical

points. This is chemistry at its fundamental level: how do nuclei move dur-

ing molecular collisions and reactions, or in response to the absorption of a

photon.

Molecular quantumdynamics, aiming to solve the time-dependent Schrödin-

ger equation, is difficult and numerically demanding. Comparing it to quan-

tum chemistry one may wonder why quantum dynamics cannot solve prob-

lems of similar size. Accurate computations of the electronic structure of

molecules withmore than 100 electrons are feasible whereas accurate dynamic

calculations including 100 atoms are not (except for special simple cases).

One difference is that quantum chemistry is characterized by low quantum

numbers. One is usually interested in the electronic ground state, or in the two

or three lowest excited states. The molecular orbitals have a simple smooth

form and can be well represented by Gaussian basis sets. In quantum dy-

namics, however, the wavefunction is much more structured and may con-

tain highly oscillatory terms. Moreover, the density of states is rather high.

There may be hundreds of eigenstates lying below a fundamental C-H or O-H
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stretch of a small polyatomic molecule (4 or 5 atoms, say). This high density of

states, which is a consequence of the fact that nuclear masses are much larger

than the electron mass, is one of the main sources of difficulties.

A second is that quantum chemistry is governed by the Coulomb poten-

tial, a rather structureless two-body interaction. Quantum dynamics, on the

other hand, has to cope with complicated many-body potentials, which are

not general but specific for the problem under investigation. The strong re-

pulsion suffered by atoms which come close to each other may lead to a very

strongly correlated motion. These differences explain why the techniques

used in quantum chemistry and quantum dynamics are often similar in spirit

but very different in detail.

The development of quantum dynamics simulations has been driven by re-

search probing the fundamental properties of molecules. Historically, the first

field of importance was scattering experiments using molecular beams. To

study elementary reactions it is necessary to enable molecules to collide with

known initial-states under controlled conditions and measure the products of

the collision [7]. One way to achieve this experimentally is in scattering ex-

periments using beams of molecules. In particular, crossed-molecular beam

experiments, pioneered by Lee, Herschbach, Toennies and others, have pro-

vided a wealth of data in this field.

More recently, time-resolved spectroscopy driven by the development of

pulsed lasers has also become important. The work of Zewail was key in

the development of techniques to produce and apply pulses of the order of

femtosecond duration [8]. This allows molecules to be followed on the time-

scale in which bonds vibrate and break. Early work studied bond breaking

in molecules such as ICN and NaI, and bond vibration in I2. The motion was

evaluated in terms of a nuclear wavepacket moving over the potential sur-

faces. These “femtochemistry” experiments have now been applied to a wide

variety of systems. A recent example of the detail produced by these tech-

niques include a study of the retinal chromophore in the rhodopsin protein

showing cis-trans isomerisation taking place over a picosecond [9].

Initial theoretical research focused on time-independent methods. Early re-

search focused on understanding line spectra, for which the states must be

known. The time-independent equation is easy to adapt to numerical solution

using matrix diagonalisation methods. And, unless the Hamiltonian is explic-

itly time-dependent, even ostensibly dynamical problems can be described

using the eigenfunctions and eigenvalues of the system.

Despite the early seminal work of McCullough and Wyatt [10, 11], which

describes the H + H2 exchange reaction in a time-dependent picture, time-

dependent methods have really only become common in the last two decades

and only recently has a text book on quantum mechanics been published

which focuses on a time-dependent perspective [12]. These methods do, how-
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ever, have advantages over time-independent ones. They are more intuitive,

connecting directly with the motion of the system. They are able to treat con-

tinuum states in a more natural way, important in unbound systems. They

are able to treat time-dependent Hamiltonians, important for including the ef-

fect of a laser pulse. They also provide a better starting point to approximate

solutions.

The MCTDH method is one such approximate method. Its power lies in

the fact that it uses a variational principle to derive equations of motion for a

flexible wavefunction ansatz. The resulting evolution of the time-dependent

basis functions means that the basis set remains optimally small, i.e. the wave-

function representation is very compact. Cheap, qualitative calculations are

possible with a small number of functions, while increasing the basis set until

convergence is reached with respect to the property of interest results in the

numerically exact answer.

The present importance of quantum chemistry calculations in supporting

general chemistry is in no small part due to the availability of computer pro-

grams usable by non-experts. Only a small handful of codes have beenwritten

implementing theMCTDHmethod. The main ones are the code developed by

Manthe and co-workers in Bielefeld, the Las Cruces code developed byWang,

and theHeidelberg code developed byMeyer, Worth and co-workers [13]. The

Heidelberg code in particular has the aim of being general and user-friendly.

It is by no means yet possible for a non-expert to run quantum dynamics cal-

culations, but it is now possible without the extensive coding for each new

problem traditionally required.

MCTDH is of course only one method, if a very successful one, in the field

and this book aims to be of interest to a wider audience than just the MCTDH

community. The method does have limitations and for some calculations

other approaches are to be preferred.1 Many of the ideas developed here and

the systems looked at are of general interest and we hope that some of them

will be picked up by other communities.

In Part 2 of the book, the MCTDH theory will be reviewed. The background

theory is dealt with briefly in Ch. 2, before the MCTDH method is looked at

in detail in Ch. 3, focusing on the special features of the method. The various

issues associated with quantum dynamics are then looked at. For example

these include how to set up the initial wavepacket (Ch. 5) and how to analyze

the results of a propagation in relation to experiments (Ch. 6). The choice of

coordinates for a study plays a large role in how easy a calculation is and

what information can be obtained. The subject of coordinates and obtaining

the kinetic energy operator is addressed in Ch. 12. The efficient integration of

1) For example, see recent review on the calculation of vibrational ener-
gies of polyatomic molecules, Ref. [14].
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the equations of motion (Ch. 4) and evaluation of potential matrix elements

(Chs. 10, 11) are also treated.

The MCTDH method is able to do more than just represent and propagate

a nuclear wavefunction. It is also able to include thermal effects and environ-

ments using density operators. This is described in Ch.s 7 and 22. One can

also obtain eigenvalues and eigenvectors of an operator taking advantage of

the compact form of the MCTDH wavefunction. This can be done either by

propagation in imaginary time (termed relaxation), or by iterative diagonalisa-

tion of the matrix representation of the operator. These methods are dealt with

in Chs. 8 and 9. If only the eigenvalues are required the filter diagonalisation

method presented in Ch. 6.2.2 is also possible. This uses the full power of the

time-dependent formalism. If the operator is the Hamiltonian, the result is

a solution of the time-independent Schrödinger equation. Another operator

relevant for molecular dynamics studies is the thermal flux operator required

in the calculation of rate constants. This topic is treated further in Ch. 19.

In Part 3, extensions to the basic method are looked at. These are all ex-

citing developments moving quantum dynamics into new directions. De-

spite its power compared to standard grid-based quantum dynamics meth-

ods, MCTDH calculations are still unable to treat more than a few atoms ex-

plicitly: calculations with more than 20 DOF quickly become intractable. The

multilayer approach of Ch. 14 promises to be able to treat 100s of particles

in the MCTDH framework. Parallelization of the MCTDH algorithm to take

advantage of modern computer architectures is also a must (Ch. 15).

A separate bottleneck to treating large systems is the need for a potential en-

ergy surface. Obtaining this function also becomes prohibitive for many atom

systems. One approach is to use a model, as done in the vibronic coupling

approach of Ch. 18, or the n-mode representation used in Ch. 23. Another

is to use direct dynamics in which the PES is calculated on-the-fly by quan-

tum chemistry calculations. This approach means that the PES is only gen-

erated where the system goes rather than globally, thus saving a huge effort.

Its implementation is described in Ch. 13. Direct dynamics provides restric-

tions on the evolving basis functions as the PES is only known locally where

it is calculated. A formulation of the MCTDH method, termed G-MCTDH,

uses a Gaussian wavepacket basis which has the desired properties (Ch. 3.5).

G-MCTDH also provides a framework to describe mixed methods such as

quantum-semiclassical dynamics in which part of the system (the bath) is

treated at a lower level level of theory to again allow larger calculations.

The original MCTDH method, like the vast majority of nuclear dynamics

calculations, does not take into account the symmetry of particle exchange:

it is assumed implicitly that all nuclei are distinguishable. The imposition of

the correct symmetry for fermions leads to MCTDHF in Ch. 16. The method

can now be used to describe electrons, and examples are given in Sec. 16.5 of
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the dynamics of these particles after the application of ultrashort, intense laser

pulses. The bosonic version, MCTDHB, is discussed in Ch. 17, as is the for-

malism for the mixed case, MCTDHBF. The resulting theory here thus makes

the MCTDH method complete.

In the final part of the book a number of applications are presented. These

demonstrate the generality of the method and highlight systems of interest to

quantum dynamics studies. Ch. 18 looks at calculating absorption spectra for

polyatomic molecules, treating the non-adiabatic coupling between electronic

states. The importance of being able to include enough modes is exemplified

by calculations on the allene photo-electron spectrum. By including all 15-

modes the assignment of the vibrational peaks was changed from previous

work that had used only four modes.

Ch. 19 looks at calculating reaction rates. A convenient and efficient way to

calculate the rate constant directly is offered by the flux-correlation approach

of Miller and co-workers [15]. CombinedwithMCTDH,Manthe has been able

to calculate accurate rate constants for a range of systems such as H + CH4 in

full dimensionality. Discrepancies with experimental data are due to errors

in the potential surfaces and these calculations provide a tough test of these

functions.

The topic of surface scattering is in Ch. 20, where it is shown that MCTDH

is able to treat systems such as CH4 and CH3I absorbed onto a solid. The

inclusion of all relevant modes is shown to be important for accurate results as

reduced dimensionality studies can introduce artefacts by preventing certain

motions. One approach used to include the huge number of modes of the

substrate in these calculations is the density matrix formalism. How to treat

general open systems using density matrices within the MCTDH framework

is then further detailed in Ch. 22.

The topic of intramolecular vibrational-energy redistribution is looked at in

Ch. 21. Understanding the flow of energy through a molecular system is a

fundamental problem which naturally involves the coupling between many

modes. The MCTDHmethod has been used to obtain detailed results in poly-

atomic systems such as HFCO, H2CS and HONO.

Proton transfer, another ubiquitous mechanism in chemistry and biochem-

istry, is treated in Ch. 23. The results presented include the transfer of a proton

along a “wire”, and a full 15D simulation in which the IR-spectrum of the pro-

tonated water dimer – the Zundel cation – is assigned and explained.

The effect of a laser field are studied in Ch. 24, where the topic of quantum

control is treated. Here, this is combined with the development of a general

Cartesian Reaction Path Hamiltonian to treat a range of systems such as laser-

driven proton-transfer and ladder climbing in CO bound to a heme molecule,

and controlling predissociation of a diatomic molecule in a rare gas matrix.
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The process of dissociative electron attachment in the water molecule is

looked at in Ch. 25. This introduces the problems of complex potential energy

surfaces and multiple product channels, and despite being only a triatomic

system is a hard numerical problem to solve. The last chapter, Ch. 26, reports

calculations on ultracold systems where quantum effects become very impor-

tant for nuclei. Here, the MCTDH method is being applied to a new area in

quantum dynamics, away from the traditional molecular dynamics for which

it was conceived.


