Molecular vibrations and molecular electronic spectra

Univ. Heidelberg Master Course WS 2013/14

> Horst Köppel Theoretical Chemistry University of Heidelberg Horst.Koeppel@pci.uni-hd.de

TABLE OF CONTENTS

A. VIBRATIONAL STRUCTURE IN ELEC-TRONIC SPECTRA

A.1 The Born-Oppenheimer approximation

A.2 The Franck-Condon principle

A.3 The shifted harmonic oscillator

A.4 The frequency-modified harmonic oscillator

A.5 Construction and properties of normal modes of vibration

B. THE JAHN-TELLER EFFECT AND VI-BRONIC INTERACTIONS

B.1 Diabatic electronic states

B.2 A simple model of vibronic coupling

B.3 Vibronic dynamics in the ethene radical cation, $C_2H_4^+$

B.4 Conical intersections of potential energy surfaces

B.5 The theorem of Jahn and Teller

B.6 The $E \otimes e$ Jahn-Teller effect

A) VIBRATIONAL STRUCTURE IN ELECTRONIC SPECTRA

A.1) The Born-Oppenheimer approximation [1]

Schrödinger equation for coupled electronic and nuclear motions:

 $H = H_{el} + T_K$ $H_{el} = T_{el} + U(x, Q)$ $H_{el}\phi_n(x, Q) = V_n(Q)\phi_n(x, Q) \quad \text{(assume solved)}$ $H\Psi(x, Q) = E\Psi(x, Q)$ $\Psi(x, Q) = \sum_m \chi_m(Q)\phi_m(x, Q)$

$$[T_K + V_n(Q) - E]\chi_n(Q) = \sum_m \Lambda_{nm}\chi_m(Q)$$

$$\Lambda_{nm} = \sum_{i} \frac{\hbar^2}{M_i} \int d^{3N} x \phi_n^* (\frac{\partial \phi_m}{\partial Q_i}) \frac{\partial}{\partial Q_i} - \int d^{3N} x \phi_n^* (T_K \phi_m)$$

x and Q denote the sets of electronic and nuclear coordinates, respectively. Correspondingly ϕ and χ stands for the electronic and nuclear wave functions.

Derivation of the coupled equations

For simplicity, put

$$T_K = -\frac{\hbar^2}{2M} \frac{\partial^2}{\partial Q^2}$$

$$\begin{split} \sum_{m} \left(T_{el} + U + T_{K} \right) \chi_{m}(Q) \phi_{m}(x,Q) &= \sum_{m} E \chi_{m}(Q) \phi_{m}(x,Q) \\ \sum_{m} \left[V_{m}(Q) + T_{K} \right] \chi_{m}(Q) \phi_{m}(x,Q) &= \sum_{m} E \chi_{m}(Q) \phi_{m}(x,Q) \\ \sum_{m} \left\{ \left[V_{m}(Q) - E + T_{K} \right] \chi_{m}(Q) \right\} \phi_{m}(x,Q) &= \\ \sum_{m} \frac{\hbar^{2}}{M} \left(\frac{\partial \chi_{m}}{\partial Q} \right) \left(\frac{\partial \phi_{m}}{\partial Q} \right) - \sum_{m} \chi_{m} \left(T_{K} \phi_{m} \right) \\ \int \phi_{n}^{*} d^{3N} x : \quad (V_{n} + T_{K} - E) \chi_{n} = \\ &= \sum_{m} \frac{\hbar^{2}}{M} \int \phi_{n}^{*} \frac{\partial \phi_{m}}{\partial Q} \frac{\partial \chi_{m}}{\partial Q} d^{3N} x \\ &- \sum_{m} \chi_{m} \int \phi_{n}^{*} \left(T_{K} \phi_{m} \right) d^{3N} x \\ &= \sum_{m} \Lambda_{nm} \chi_{m} . \end{split}$$

So far still formally exact. Approximation: put

$$\Lambda_{nm} = 0$$

$$\implies [T_K + V_n(Q) - E]\chi_n(Q) = 0$$
.

It follows:

- (Electronic) eigenvalues, $V_n(Q)$, of a given state correspond to the potential energy hypersurface for the nuclear motion.
- Total molecular wavefunction becomes a product of a nuclear and electronic wave function:

$$\Psi(x,Q) = \chi_n(Q)\phi_n(x,Q)$$

- Valid, e.g., when $\phi_n(x, Q) \approx \phi_n(x Q)$.
- BO approximation!

Electrons follow the nuclear motion instantaneously (adiabatic), due to the large ratio between nuclear and electronic masses (i.e. the large effective mass of a nucleus compared to that of an electron $M_i \gg m_{el}$). Simple estimates for hierarchy of energy scales

$$E_{elec} \sim < T_e > \sim \frac{\hbar^2 \kappa_{elec}^2}{m} \sim \frac{\hbar^2}{m d^2}$$

with $d \approx$ molecular dimension

$$E_{vib} \sim \hbar \sqrt{\frac{f}{M}} \quad mit \quad f \sim \frac{\partial^2 E_{elec}}{\partial R^2} \sim \frac{E_{elec}}{d^2}$$
$$\implies E_{vib} \sim \hbar^2 \sqrt{\frac{1}{Mmd^4}} = \sqrt{\frac{m}{M}} \frac{\hbar^2}{md^2} = \sqrt{\frac{m}{M}} E_{elec}$$
$$E_{rot} \sim \langle T_{rot} \rangle \sim \frac{\hbar^2}{I} = \frac{\hbar^2}{Md^2} = \frac{m}{M} E_{elec}$$
$$\implies E_{rot} \ll E_{vib} \ll E_{elec}$$

Larger electronic energy scale, shorter time scale of the oscillations (for non-stationary states).

 \Downarrow

Similar to classical picture; fast readjustment of electrons to nuclear changes.

Analogous for relative nuclear displacements

$$< R^{2} > \sim \frac{\hbar}{M\omega} < Q^{2} > \sim \frac{\hbar^{2}}{ME_{vib}} \left(\frac{\hbar}{\sqrt{fM}}\right)$$
$$\kappa = \frac{\sqrt{< R^{2} >}}{d} \sim \frac{\hbar}{d\sqrt{M}\hbar} \sqrt[4]{Mmd^{4}} = \sqrt[4]{m/M}$$

... and for nonadiabatic coupling elements

$$<\Lambda_{nm}> \sim \frac{\hbar^2}{M} < \frac{\partial^2}{\partial R^2} >_{elec} + \frac{\hbar^2}{M} < \frac{\partial}{\partial R} >_{elec} < \frac{\partial}{\partial R} >_{vib}$$
$$\sim \frac{\hbar^2}{M} k_{elec}^2 + \frac{\hbar^2}{M} k_{elec} \sqrt{\frac{Mw}{\hbar}} < \frac{\partial}{\partial Q} >_{vib}$$
$$\sim \frac{\hbar^2}{Md^2} + \frac{\hbar^2}{Md} \sqrt{\frac{\sqrt{fM}}{\hbar}}$$
$$\sim \frac{m}{M} E_{elec} + \frac{\hbar^2}{M^{\frac{3}{4}}d} - \sqrt[4]{\frac{m^2}{M^2\hbar^2d^2}}$$
$$\sim \frac{m}{M} E_{elec} + \frac{\hbar^2}{M^{\frac{3}{4}}d^2m^{\frac{1}{4}}m^{\frac{3}{4}}}$$
$$\sim \frac{m}{M} E_{elec} + \left(\frac{m}{M}\right)^{\frac{3}{4}} E_{elec}$$
$$\overline{E_{rot}} \approx Term(\partial^2/\partial R^2) \ll Term(\partial/\partial R) \ll E_{vib}$$

 κ^3

 κ^4

 κ^4

 $\kappa^2 \times E_{elec}$

Hellmann-Feynman relation

Re-writing the non-adiabatic (derivative) coupling terms:

$$\frac{\partial H_{el}}{\partial Q_i}\phi_n(x,Q) + H_{el}\frac{\partial \phi_n(x,Q)}{\partial Q_i} = \frac{\partial V_n(Q)}{\partial Q_i}\phi_n(x,Q) + V_n(Q)\frac{\partial \phi_n(x,Q)}{\partial Q_i}$$

Multiplying from the left by ϕ_m^* and integrating over the electronic coordinates, x, leads to:

$$\langle \phi_m(Q) | \frac{\partial H_{el}}{\partial Q_i} | \phi_n(Q) \rangle_x + V_m(Q) \langle \phi_m(Q) | \frac{\partial \phi_n(Q)}{\partial Q_i} \rangle_x = \\ = \langle \phi_m(Q) | \frac{\partial V_n(Q)}{\partial Q_i} | \phi_n(Q) \rangle_x + V_n(Q) \langle \phi_m(Q) | \frac{\partial \phi_n(Q)}{\partial Q_i} \rangle_x$$

$$n = m: \qquad \langle \phi_n(Q) | \frac{\partial H_{el}}{\partial Q_i} | \phi_n(Q) \rangle_x = \frac{\partial V_n(Q)}{\partial Q_i}$$

 $n \neq m$:

$$\int d^{3N} x \phi_m^* \left(\frac{\partial \phi_n}{\partial Q_i}\right) = \frac{\int d^{3N} x \phi_m(x,Q) \left(\frac{\partial H_{el}}{\partial Q_i}\right) \phi_n(x,Q)}{V_n(Q) - V_m(Q)}$$

In the vicinity of a degeneracy the derivative couplings $\operatorname{can} \underline{diverge}$ and the adiabatic approximation is expected to break down!

Harmonic oscillator and its eigenfunctions

The Hamiltonian of a quantum harmonic oscillator is given by

$$\hat{H} = -\frac{\hbar^2}{2\mu} \; \frac{\partial^2}{\partial r^2} + \frac{1}{2} \; f \; r^2$$

Using the relationship between dimensioned (r) and dimensionless coordinates (Q),

$$Q = \sqrt{\frac{\mu \ \omega}{\hbar}} r; \quad \omega = \sqrt{\frac{f}{\mu}}$$

we get

$$\hat{H} = \frac{\hbar \ \omega}{2} \left(-\frac{\partial^2}{\partial Q^2} + Q^2 \right)$$

The eigenfunctions of the harmonic oscillator involve the well-known Hermite polynomials and read as

$$\chi_n(Q) = \{\sqrt{\pi} \ n! \ 2^n\}^{-\frac{1}{2}} \ e^{-\frac{Q^2}{2}} \ H_n(Q)$$

The first Hermite polynomials, $H_n(Q)$, are

 $H_0(Q) = 1,$ $H_1(Q) = 2 Q,$ $H_2(Q) = 4 Q^2 - 2.$ Remember symmetry:

$$H_n(-Q) = (-1)^n H_n(Q)$$

The multidimensional harmonic oscillator

$$H = \sum_{i} H_{i} = \sum_{i} \frac{\hbar\omega_{i}}{2} \left(-\frac{\partial^{2}}{\partial Q_{i}^{2}} + Q_{i}^{2} \right)$$

From $[H_i, H_j] = 0$ (for all $i, j \le M(=3N-6)) \Rightarrow$

Multidimensional eigenfunction Ξ is product function:

$$\Xi_{v_1,v_2,..}(Q_1,\ldots,Q_M) = \chi_{v_1}(Q_1) \,\chi_{v_2}(Q_2) \ldots \chi_{v_M}(Q_M)$$

The individual eigenfunctions are well known and read as

$$\chi_v(Q) = \{\sqrt{\pi} \ v! \ 2^v\}^{-1/2} e^{-Q^2/2} \ H_v(Q)$$

The first Hermite polynomials H_v are

$$H_0(Q) = 1$$
, $H_1(Q) = 2Q$, $H_2(Q) = 4Q^2 - 2$.

Meaning of the coordinate Q: displacement as measured in units of the zero-point amplitude, i. e.,

$$\chi_0(1) = e^{-1/2}\chi_0(0).$$

A.2) The Franck-Condon principle

Consider the transition between different electronic states, particularly, a transition from the electronic ground state, GS, to one of the excited states, ES (optical, UV-absorption).

The transition probability follows from first order timedependent perturbation theory;

$$I(\omega_{ph}) \sim \sum_{F} |\langle \Psi_F | H_1 | \Psi_I \rangle^2 \delta(E_F - E_I - \hbar \omega_{ph})$$

where Ψ_I and Ψ_F are eigenfunctions of H_0 (isolated molecule) and correspond to the initial and final states during a transition.

Interaction between the molecule and radiation field in the dipole approximation:

$$H_1(t) \sim -\sum_{j=1}^N e(\vec{\varepsilon}.\vec{r_j}) E_0(t)$$

In contrast to the IR-spectrum the summation index, j, runs only over electronic coordinates (orthogonality of the electronic wave functions).

Within the Born-Oppenheimer approximation the wave functions are written in a product form;

$$\Psi_I = \phi_i \chi_{\upsilon}; \qquad \Psi_F = \phi_f \tilde{\chi}_{\upsilon'}$$

with

$$(T_k + V_i - E_v)\chi_v = 0$$

$$(T_k + V_f - \tilde{E}_{v'})\tilde{\chi}_{v'} = 0$$

Note that χ_{υ} and $\tilde{\chi}_{\upsilon'}$ are vibrational functions of different potential energy curves.

Evaluate the matrix elements in the Born-Oppenheimer approximation;

$$\int \Psi_F^*(x,Q) H_1 \Psi_I(x,Q) d^{3N} x dQ =$$
$$= \int \tilde{\chi}_{v'}^*(Q) \int \phi_f^*(x,Q) H_1 \phi_i(x,Q) d^{3N} x \, \chi_v(Q) dQ$$

The integral $T_{fi}(Q) = \int \phi_f^*(x, Q) H_1 \phi_i(x, Q) dx$ is called the <u>electronic transition moment</u> or dipole-transition-(matrix) element. It replaces the dipole moments (=diagonal matrix elements) evaluated in IR-spectroscopy. Therefore, one can write the matrix elements as follows:

$$\int \Psi_F^* H_1 \Psi_I dx dQ = \int \tilde{\chi}_{\upsilon'}^*(Q) T_{fi}(Q) \chi_{\upsilon}(Q) dQ$$

The transition moment depends on Q only through the electronic wave function. If the transition moment depends sufficiently weakly on Q, one can write;

$$T_{fi}(Q) \approx T_{fi}(Q=0)$$

with an appropriate reference geometry, Q = 0. It is natural to choose (mostly) the reference geometry to be the equilibrium geometry of the molecule in the initial state:

Condon approximation or Franck-Condon principle.

In the Condon approximation:

$$\int \Psi_F^* H_1 \Psi_I dx dQ = T_{fi}(Q=0) S_{v'v}$$

with $S_{\upsilon'\upsilon} = \int \tilde{\chi}^*_{\upsilon'}(Q) \chi_{\upsilon}(Q) dQ.$

 $S_{v'v}$ and its square are <u>Franck-Condon overlap integral</u> and <u>Franck-Condon factor</u>, respectively (see also [2]).

The spectrum follows immediately:

$$I(\omega_{ph}) \sim |T_{fi}(Q=0)|^2 \sum_{v'} |S_{v'v}|^2 \delta(\tilde{E}_{v'} - E_v - \hbar \omega_{ph})$$

The relative intensities are determined only through vibrational wave functions, electronic wave functions play almost no role.

Principle of vertical transitions !

A.3) Shifted harmonic oscillator

Important special case: harmonic potentials with the same curvature (force constant).

Define Q as the dimensionless normal coordinate of initial state (mostly, electronic ground state).

$$V_i(Q) = \frac{\omega}{2}Q^2 \qquad (\hbar = 1)$$

With the same curvature (force constant) for $V_f(Q)$, we have

$$V_f(Q) = V_f(Q=0) + \frac{\omega}{2}Q^2 + kQ$$

with
$$k = \left(\frac{\partial V_f}{\partial Q}\right)_{Q=0}$$
; $V_f(Q=0) \equiv V_0$

The <u>linear coupling</u> leads to a shift in the equilibrium geometry and a stabilization energy along the distortion (see next Fig).

The oscillator can be easily solved by adding the quadratic terms (completing the square);

$$V_f(Q) = V_0 + \frac{\omega}{2} \left(Q + \frac{k}{\omega}\right)^2 - \frac{k^2}{2\omega}$$
$$= V_0 - \frac{k^2}{2\omega} + \frac{\omega}{2}Q'^2$$

 $\uparrow \quad \uparrow$ Stokes-shift ; New normal coordinate

Note: $\frac{\partial}{\partial Q} = \frac{\partial}{\partial Q'} \implies$ same eigenfunctions \implies

$$S_{v'v} = N_{v'}N_v \int_{-\infty}^{\infty} dQ H_{v'} \left(Q + \frac{k}{\omega}\right) H_v(Q) e^{-\frac{Q^2}{2}} e^{-\frac{1}{2}(Q+k/\omega)^2}$$

We restrict ourselves to the special case where v = 0. By substituting $Q' = Q + \kappa$ and $\kappa = k/\omega$, one can easily obtain:

$$S_{v'0} = N_{v'}N_0 \int_{-\infty}^{\infty} dQ' H_{v'}\left(Q'\right) e^{-Q'^2} e^{\kappa Q' - \frac{1}{2}\kappa^2}$$

There are several possibilities to evaluate these integrals, such as the method of generating functions (see exercises) or operator algebra (occupation number representation of harmonic oscillator).

Derivation of Poisson Distribution

Start from

$$S_{v'0} = N_{v'} N_0 \int_{-\infty}^{\infty} dQ' H_{v'} \left(Q'\right) e^{-Q'^2} e^{\kappa Q'} e^{-\frac{\kappa^2}{2}}$$

and supplementary sheet on Hermite polynomials, item 2. Use $\lambda = \kappa/2, \ z = Q' \to Q, \ v' \to v$

$$\Rightarrow S_{\nu 0} = N_{\nu} N_{0} \int_{-\infty}^{\infty} dQ H_{\nu} (Q) e^{-Q^{2}} e^{-\kappa^{2}/4} \sum_{n=0}^{\infty} \frac{(\kappa/2)^{n}}{n!} H_{n}(Q) \left[N_{\nu} = \left\{ \sqrt{\pi} \ \nu! \ 2^{\nu} \right\}^{-\frac{1}{2}} \right]$$

$$= N_{\upsilon}N_{0}e^{-\kappa^{2}/4}\sum_{n=0}^{\infty}\frac{(\kappa/2)^{n}}{n!} \frac{\delta_{\upsilon n}}{N_{\upsilon}N_{n}}$$
$$= e^{-\kappa^{2}/4} \frac{(\kappa/2)^{\upsilon}}{\upsilon!} \sqrt{2^{\upsilon}\upsilon!}$$
$$\implies |S_{\upsilon 0}|^{2} = \frac{(\kappa^{2}/2)^{\upsilon}}{\upsilon!} e^{-\kappa^{2}/2}$$

Poisson Intensity Distribution

Summary of the shifted harmonic oscillator

$$P(E_{ph}) = \sum_{\upsilon} \frac{a^{\upsilon}}{\upsilon!} e^{-a} \delta(E_{ph} - V_0 + a\omega - \upsilon\omega)$$

where $a = \kappa^2/2 = k^2/(2\omega^2)$

Sum rule:

$$\sum_{v} |S_{v0}|^2 = e^{-a} \sum_{v} \frac{a^v}{v!} = e^{-a} e^{+a} = 1$$

Mean quantum number:

$$\bar{\upsilon} = \sum_{\upsilon} \frac{a^{\upsilon} \upsilon}{\upsilon!} e^{-a} = a \sum_{\upsilon > 0} \frac{a^{\upsilon - 1}}{(\upsilon - 1)!} e^{-a} = a$$

The parameter a is a measure of the vibrational excitation in an electronic transition.

 $a\omega$ is the mean vibrational energy during the transition (= Stokes-shift $k^2/(2\omega))$

For $a \to 0$ we have $|S_{v0}|^2 \longrightarrow \delta_{v0}$, which means no excitation (potential curves V_i and V_f are identical).

Poisson distributions for various values of the parameter *a*

<u>Intensity ratio</u>: $|S_{\nu+1,0}/S_{\nu,0}|^2 = \frac{a}{\nu+1}$

 $\frac{Mean \ energy \ (center \ of \ gravity \ or \ centroid):}{\bar{E} = \int EP(E)dE \\
= \sum (V_0 - a\omega + \upsilon\omega) \frac{a^{\upsilon}}{\upsilon!} e^{-a} \\
= V_0 - a\omega + \omega \sum_{\upsilon} \upsilon \frac{a^{\upsilon}}{\upsilon!} e^{-a} \\
= V_0 - a\omega + \omega \sum_{\upsilon} \upsilon \frac{a^{\upsilon}}{\upsilon!} e^{-a}$

Energetic width:

$$\begin{aligned} (\Delta E)^2 &= \overline{(E - \bar{E})^2} = \overline{E^2} - \overline{\bar{E}^2} \\ &= \sum_{\upsilon} (\upsilon - a)^2 \omega^2 \frac{a^{\upsilon}}{\upsilon!} e^{-a} \\ &= \sum \{\upsilon(\upsilon - 1) + \upsilon - 2a\upsilon + a^2\} \omega^2 \frac{a^{\upsilon}}{\upsilon!} e^{-a} \\ &= \sum \omega^2 \frac{a^{\upsilon}}{(\upsilon - 2)!} e^{-a} + (a - 2a^2 + a^2) \omega^2 \\ &= (a^2 + a - a^2) \omega^2 = a\omega^2 = \frac{k^2}{2} \end{aligned}$$

 $\implies \Delta E \sim \frac{k}{\sqrt{2}}$

Width is defined through the gradient of the final state, $V_f(Q)$, at Q = 0 (because of the finite extension of $\chi_0(Q)$).

Cederbaum, Domcke, J. Chem. Phys. <u>60</u>, 2878 (174)

16. Nitrogen

Symmetry: $D_{\infty h}$

h

79

15. Carbon Monoxide

Symmetry: $C_{\infty Y}$

Ĵ,

Two-dimensional shifted harmonic oscillator

$$V_i(Q_1, Q_2) = \sum_{j=1,2} \frac{\omega_j}{2} Q_j^2 \qquad (\hbar = 1)$$
$$V_f(Q_1, Q_2) = V_f(Q = 0) + \sum_{j=1,2} (\frac{\omega_j}{2} Q_j^2 + k_j Q_j)$$

$$\tilde{E}_{\upsilon_1,\upsilon_2} - E_{0,0} = V_0 - \frac{k_1^2}{2\omega_1} - \frac{k_2^2}{2\omega_2} + \omega_1\upsilon_1 + \omega_2\upsilon_2$$

$$\Psi_f = \phi_f \ \tilde{\chi}_{\upsilon_1}(Q_1) \ \tilde{\chi}_{\upsilon_2}(Q_2)$$

$$|S_{\upsilon_1\upsilon_2,00}|^2 = |S_{\upsilon_10}|^2 |S_{\upsilon_20}|^2$$
$$P(E_{ph}) = \sum_{\upsilon_1,\upsilon_2} \frac{a_1^{\upsilon_1} a_2^{\upsilon_2}}{\upsilon_1! \upsilon_2!} e^{-a_1 - a_2} \times$$
$$\times \quad \delta(E_{ph} - V_0 + a_1\omega_1 + a_2\omega_2 - \upsilon_1\omega_1 - \upsilon_2\omega_2)$$

where $a_j = \kappa_j^2/2 = k_j^2/(2\omega_j^2)$ (j = 1, 2).

"Convolution" of two Poisson intensity distributions!

A.4) The frequency-modified harmonic oscillator

<u>Non-totally symmetric modes</u> : $\frac{\partial V_f(Q)}{\partial Q} = 0$

Next order in expansion: $V_f(Q) = V_f(0) + \frac{\gamma}{2}Q^2 + \frac{\omega}{2}Q^2$

New frequency : $\omega_f \equiv \hat{\omega} = \sqrt{\omega(\omega + \gamma)}$ New dimensionless normal coordinate:

$$\hat{Q} = \sqrt{\frac{\hat{\omega}}{\omega}}Q = \sqrt[4]{\frac{\omega+\gamma}{\omega}}Q$$
$$\implies H_f = -\frac{\omega}{2}\frac{\partial^2}{\partial Q^2} + \frac{\omega+\gamma}{2}Q^2 \equiv -\frac{\hat{\omega}}{2}\frac{\partial^2}{\partial \hat{Q}^2} + \frac{\hat{\omega}}{2}\hat{Q}^2$$

One can find the Franck-Condon factors as follows:

$$|S_{0,2\nu+1}|^2 = 0$$

$$|S_{0,2\nu}|^2 = \frac{2\sqrt{\omega\hat{\omega}}}{\omega+\hat{\omega}} \left(\frac{\hat{\omega}-\omega}{\hat{\omega}+\omega}\right)^{2\nu} \frac{(2\nu-1)!!}{2^{\nu}\nu!}$$

Example:

 $\hat{\omega}=2\omega\Longrightarrow$

$$|S_{0,0}|^2 = \frac{\sqrt{8}}{3} \approx 0.94, \ |S_{0,2}|^2 \approx 0.05, \ |S_{0,2}|^2 \approx 0.004$$

Only weak vibrational excitation !