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ABSTRACT: The predominant reason for the damaging power of high-energy radiation is
multiple ionization of a molecule, either direct or via the decay of highly excited
intermediates, as, e.g., in the case of X-ray irradiation. Consequently, the molecule is
irreparably damaged by the subsequent fragmentation in a Coulomb explosion. In an
aqueous environment, however, it has been observed that irradiated molecules may be saved
from fragmentation presumably by charge and energy dissipation mechanisms. Here, we
show that the protective effect of the environment sets in even earlier than hitherto expected,
namely immediately after single inner-shell ionization. By combining coincidence
measurements of the fragmentation of X-ray-irradiated microsolvated pyrimidine molecules
with theoretical calculations, we identify direct intermolecular electronic decay as the
protective mechanism, outrunning the usually dominant Auger decay. Our results
demonstrate that such processes play a key role in charge delocalization and have to be
considered in investigations and models on high-energy radiation damage in realistic
environments.

The exposure to ionizing radiation is known to have severe
consequences to living organisms. Depending on the

radiation dose, the organism may suffer from cytotoxic effects
ranging from enhanced cancer risk to radiation sickness.
Notwithstanding the macroscopic symptoms, the radiation
damage itself happens on a molecular level.1

As a common assumption, about two-thirds of such damage is
an indirect and purely environmental effect caused by secondary
low-energy electrons and radicals1−4 originating in radiolysis of
water monomers surrounding biomolecules. The rest results
from direct deposition of energy in biomolecules. It is tempting
to assume that the indirect damage owes its predominance to
simply the large amount of water in biological tissue. The
situation is, however, more complicated, and recent works
suggest that the contribution from direct and indirect processes
is still not well understood.3,5

As evidenced by recent ion-impact experiments on several
hydrated biomolecules,6−10 an aqueous environment is able to
significantly suppress the direct damage and thus play an
“unusual” role of a damage protector. This striking protective
effect was ascribed to the environmental ability to absorb and
dissipate the energy transferred to biomolecules in collisions.7,11

If the radiation damage was induced by multiple ionization,
charge redistribution from localized states to delocalized ones
was also considered among the potential protection mecha-
nisms. In the present study, we demonstrate that the water

environment starts to protect biomolecules exposed to radiation
even before ultrafast autoionization converts these molecules
into highly unstable multiply charged systems.
In case of X-ray element-specific irradiation, the radio-

biologically most relevant process is inner-shell ionization of one
of the constituting atoms of a biomolecule, forming highly
excited states with vacancies in a core orbital. Such highly excited
species relax predominantly via Auger decay, in which one
electron of the molecular valence orbitals fills the core vacancy
and another valence electron is released, resulting in dissociative
multiply charged states. The consequences, namely inevitable
destruction by fragmentation, are well investigated for isolated
molecules.12−20

We investigated the X-ray-induced fragmentation of micro-
solvated pyrimidine in a photoelectron-photoion-photoion
coincidence (PEPIPICO) experiment (see Experimental
Methods). Being one of the building blocks of nucleobases
and therefore of larger biomolecules, pyrimidine (C4H4N2)
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serves as a prototype system for many fundamental inves-
tigations.15,20 Its photochemistry is especially relevant for
various medical applications, in which halogenated pyrimidines
are used as radiosensitizers.21 The core ionization of isolated
pyrimidine and its derivatives is known to cause the
fragmentation of the molecule into two or more ionic
fragments.14,15 Thus, no parent ions or doubly charged
molecular fragments are observed in coincidence with core
electrons, which is in agreement with the present work.
In contrast, for microsolvated pyrimidine, we observe intact

parent ions in coincidence with water cluster ions and carbon
photoelectrons. The corresponding ion−ion coincidence map is
shown in Figure 1a. The mass-to-charge ratio of the pyrimidine

parent ion is m/z = 80. Prominent features appear in the
coincidence map on them/z = 80 diagonal or to the upper left of
it, i.e., for pairs of singly charged ions whose sum of masses is
80 atomic units or less. These features mainly originate from
ionization of isolated pyrimidine molecules, which occur
abundantly in the target (see Experimental Methods).
Importantly, however, a significant signal is observed for ion

pairs with one of the ions having the mass of the pyrimidine
parent ion, i.e., 80 atomic units, emphasized between the red
lines in Figure 1a. To obtain insight into the underlying
fragmentation processes, the spectrum of the ions observed in
coincidence with said parent ion is shown in Figure 1b.
The most prominent feature in this spectrum is a series of

water cluster ions at integer multiple masses of the water
molecule (m/zH2O = 18). The slight shift of the peak centers to
higher masses compared to the theoretical water cluster ion
masses (displayed by dashed vertical bars) may indicate
protonation of the water cluster ions, a common observation
in the fragmentation of water clusters.22 Additionally, two peaks

are observed at m/z = 1 and m/z = 26−28, which can be
attributed to single protons and the pyrimidine fragments C2H2

+

and CH2N
+. Their appearance is explained by clusters

containing more than one pyrimidine molecule, allowing
fragmentation into pyrimidine parent ions and molecular
fragments.
In order to identify the mechanisms responsible for the

experimental observations, we performed calculations on the
decay of core vacancies in microsolvated pyrimidine molecules
(see Supporting Information for computational details). The
electron spectra resulting from the decay of carbon core
vacancies of isolated and tetrasolvated pyrimidine are shown in
Figure 2, parts a and b. The spectra are averaged over all carbon
atoms of the molecule. The Auger spectrum of isolated
pyrimidine (panel a) agrees well with earlier experimental and
theoretical reports.23 The total electron spectrum of 4-fold
hydrated pyrimidine (red trace in panel b) is overall very
similarly shaped compared to that of isolated pyrimidine.
However, a closer look shows a dramatic difference in the nature

Figure 1. Photoelectron−photoion−photoion coincidence spectra
from a target jet containing both isolated and microsolvated pyrimidine
molecules, ionized with soft X-rays of 300 eV photon energy. (a) Ion−
ion map for coincidences of a carbon core photoelectron and two ions.
(b) Spectrum of ion 1, selected for ion 2 being the pyrimidine parent
ion (dark blue trace) and 10-fold magnified (light blue trace).

Figure 2. Calculated electron spectra resulting from the decay of core
vacancies in pyrimidine molecules. (a) Auger spectrum of isolated
pyrimidine after carbon core ionization, averaged over all carbon atoms.
(b) Total spectrum of pyrimidine solvated by four water molecules
(red) and the contribution of local Auger decay (gray) after carbon core
ionization. (c) Auger spectrum of isolated pyrimidine after nitrogen
core ionization, averaged over both nitrogen atoms. (d) Total spectrum
of pyrimidine solvated by four water molecules (red) and the
contribution of local Auger decay (gray) after nitrogen core ionization.
In panels b and d, the red shaded area corresponds to nonlocal
intermolecular channels.
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of the final states. Only aminor part (gray trace in panel b) of the
spectrum corresponds to dicationic states for which both
charges are localized at the pyrimidine molecule. The difference
between the total spectrum (red trace) and the localized
dicationic contribution corresponds to delocalized final states,
for which the second electron was emitted from the environ-
ment, having direct implications on the subsequent fragmenta-
tion of the system. A very similar behavior is observed for core
ionization of nitrogen atoms, and the corresponding spectra are
shown in Figure 2, parts c and d. Exploration of the
configurations of the final states reveals core-level intermolecular
Coulombic decay24−26 (core ICD) as the dominant nonlocal
decay (see the Supporting Information for a precise description
of the contributing channels). In this mechanism, a core vacancy
is filled by a valence electron of the pyrimidine, and a valence
electron from a neighboring water molecule is emitted. ICD and
related processes were recently predicted and observed to
significantly contribute to the secondary electron spectra of core
and inner-valence vacancies in dense media.27−32 A second
contributing process is core-level electron-transfer-mediated-
decay (core ETMD), which may occur in two variants. In
ETMD(2), the core vacancy is filled by a valence electron of a
neighboring water molecule, and another valence electron of the
same molecule is ejected. ETMD(3) involves three molecules,
and the released electron originates from yet another adjacent
water molecule.
Remarkably, while ICD and ETMD usually dominate only if

local electron emission is energetically forbidden, in the present
case, they outrun even Auger decay, which is typically the
dominant decay route of core vacancies. As one possible
consequence of ICD, the pyrimidinemolecule and the hydration
shell separate by Coulomb repulsion and are observable as
pyrimidine parent ion and water cluster ion, matching well with
the experimental observation.
For a pyrimidine molecule solvated by only four water

molecules, our calculations predict a remarkable ratio of 58% of
carbon core vacancies decaying by intermolecular processes.
This value grows from 0% to 24%, 41%, and 50% for solvation by
0, 1, 2, and 3 water molecules, respectively (see Supporting
Information for ionization of nitrogen) and is expected to be
even larger for fully solvated molecules.
From the present experimental spectra, the ratio of local to

intermolecular decay cannot be deduced, since the exact

composition of the target gas jet (isolated pyrimidine, water,
pyrimidine molecules hydrated by different numbers of water
molecules) is not known accurately. For similar reasons, the
exact fraction of molecules, which are protected from
fragmentation by the intermolecular decay, is unknown. While
some of the final states may still be dissociative (producing
pyrimidine fragment ions and neutral fragments), the stable
parent ion is known to dominate themass spectrum after valence
ionization.20,33We envision further final state selective studies to
quantify the extent of the protection. The protection effect of the
solvation against X-ray-induced radiation damage is illustrated
in Figure 3, which schematically shows how different the fates of
isolated pyrimidine (panel a) and solvated (panel b) pyrimidine
are upon inner-shell ionization.
The relevance of ICD for radiobiology has been discussed

intensely throughout the years after its prediction in 1997.34−37

Within this discussion, mainly the role of emerging secondary
electrons, ions, and radicals contributing to the indirect
radiation damage is considered. These particles with damaging
potential are the products of ICD of inner-valence vacancies29,34

or in the case where ICD is part of a decay cascade and occurs
subsequently to local Auger decay.35,36 In the present work, we
reveal the importance of the core-level variant of ICD as damage
protector by demonstrating its decisive role for the fate of a core-
ionized biomolecule reducing the direct damage substantially.
Our findings imply that models on radiation damage need to be
revisited if the damage is mediated by dissociation of multiply
charged molecular states, which are populated via excited
intermediates. First, the aqueous environment of a biorelevant
molecule starts to intervene early and may drastically change the
decay route of excited intermediates before reaching the
dissociative state. Second, the products of individual photon−
molecule interactions, such as electrons, ions, and radicals, differ
qualitatively. Since these products and their properties are
considered as the starting conditions for indirect radiation
damage, the referring models are also directly affected.
For proper assessment of the radiobiological effect of X-rays,

knowledge about the radiation chemistry of ionized solvated
molecules is required. X-ray-based radiotherapy mainly relies on
the direct damaging effect to biomolecules. Ion radiotherapy
turned out to be significantly advantageous compared to X-ray
radiotherapy in many points, with the main reason being the
lateral concentration of radiation dose.38 It is another interesting

Figure 3. Schematic of the observed process. (a) X-ray photoionization of a biomolecule is followed by Auger decay into doubly charged molecular
states. As a consequence, the molecule dissociates into ionic fragments. (b) If the molecule is solvated, intermolecular decay processes like core-level
ICD become operable, which distribute charge to the environment and thereby protect the molecule from fragmentation.
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aspect that destructive multiply charged molecular states are
typically directly induced by ion impact, while they are
populated via excited intermediates after X-ray ionization.
Intermolecular decay processes as observed here may thus
contribute to the lower efficiency of X-ray radiation therapies.

■ EXPERIMENTAL METHODS
The experiment was performed at the P04 beamline of the
PETRA III synchrotron radiation facility in Hamburg.39 The
storage ring was operated in 40-bunch mode, delivering light
pulses to the beamline with about 192 ns temporal spacing. A
photoelectron−photoion−coincidence (PEPICO) setup avail-
able at the beamline was used. The working principle is similar to
the one described in ref 40. The electron spectrometer is a
magnetic bottle type time-of-flight spectrometer, and the drift
tube is equipped with several retardation stages. The permanent
magnet, which is used in this type of spectrometers to guide the
electrons into the electron drift tube, is ring-shaped and
simultaneously is part of the 23 mm long ion drift tube of the
ion time-of-flight spectrometer. The ion extraction potential is
applied continuously. Therefore, a continuous stable operation
without voltage pulsing is possible, however, with the drawback
of a limited resolution in both electron and ion spectra. From our
ion time-of-flight spectra we estimated a resolution of (m/z)/
Δ(m/z)≈ 15. In the electron spectra, photoelectrons and Auger
electrons, which are by far the dominant contribution at the used
photon energies, are well separated. No further differentiation
was attempted. Both ion and electron spectrometer are
equipped with a chevron microchannel plate stack to detect
electron and ion emission.
Microhydrated pyrimidine molecules were produced by

supersonic coexpansion of the vapor of a mixture of liquid
water and pyrimidine (94% water, 6% pyrimidine) through a
conical copper nozzle (80 μm diameter, 30° opening angle) into
vacuum. To increase the vapor pressure, the liquid mixture was
heated to 80 °C. The formation of hydrated molecules under
these conditions was confirmed prior to the beamtime in
preparatory experiments using a commercial quadrupole mass
spectrometer. The ratio of microhydrated molecules is typically
in the order of a few percent of the overall target jet. Beside the
production of single pyrimidine molecules embedded in a water
cluster, the formation of clusters with several pyrimidine
molecules is possible but expected to be weak. Note that using
this procedure of sample preparation, the appearance of isolated,
gaseous water and pyrimidine molecules cannot be avoided. See
the Supporting Information for a representative mass spectrum
obtained with similar conditions.
The expansion chamber was separated from the interaction

chamber by a skimmer with 0.7 mm orifice diameter. The typical
pressure inside the interaction chamber during operation was
about 3 × 10−6 mbar.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01879.

Detailed description of the data acquisition and analysis
procedure, computational details, exemplary target mass
spectrum, individual channels contributing to the decay of
core vacancies in C and N atoms in microsolvated
pyrimidine, and calculated integrated contribution of
local Auger decay to the total decay (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Andreas Hans − Institut für Physik und CINSaT, Universität
Kassel, 34132 Kassel, Germany; orcid.org/0000-0002-
4176-4766; Email: hans@physik.uni-kassel.de

Nikolai V. Kryzhevoi − Theoretische Chemie, Physikalisch-
Chemisches Institut, Universität Heidelberg, 69120
Heidelberg, Germany; Email: nikolai.kryzhevoi@pci.uni-
heidelberg.de

Authors
Philipp Schmidt− Institut für Physik und CINSaT, Universität
Kassel, 34132 Kassel, Germany; European XFEL, 22869
Schenefeld, Germany
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