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Several known processes, such as single-photon double ionization and double Auger decay, result in correlated
emission of two electrons from an atom or molecule. The ratio of double to single ionization in these processes
usually amounts only to several percent. Recently, an experiment was reported in helium droplets doped with
alkali dimers, where double ionization of the dimer after excitation of the helium proceeds via interatomic
Coulombic decay and occurs with an efficiency comparable to that of single ionization via the usual interatomic
Coulombic decay. Motivated by these experimental results, we investigate here the theory of this double inter-
atomic Coulombic decay (dICD) process. First, we develop an explicit asymptotic formula for the decay width
of dICD based on the assumption that the electronically excited system providing the necessary excess energy
and its neighbor are spatially well separated. This formula contains only quantities accessible experimentally for
the separated entities – the system and its neighbor. Second, we derive a general analytical expression for the
decay width of dICD by using many-body perturbation theory. Finally, we investigated the efficiency of dICD
for experimentally realizable small atomic and molecular clusters employing the asymptotic formula.
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I. INTRODUCTION

Among the processes which lead to correlated emission of
two electrons after absorption of one photon, single-photon
double ionization (SPDI) [1–5] and double Auger [6–10]
are the best known. In the former, the two electrons escape
directly following the photon absorption; in the latter, they
escape in the decay of a metastable core-ionized state. This
concerted double-electron emission is primarily due to the
electron correlation in the final ionized state [2]. It is common
to describe its effect in terms of shake-off and knock-out
mechanisms [2,3,11]. In the shake-off mechanism, the first
electron is emitted rapidly. The sudden change in the potential
is felt by the remaining electrons and their subsequent relax-
ation leads to the ejection of the second electron. Accordingly,
the signature of the shake-off process in the electron kinetic
energy spectrum appears as peaks at high (first electron) and
low (second electron) electron energies [10,12]. In contrast,
the knock-out mechanism can be seen as an impact ioniza-
tion, whereby the first emitted electron collides inelastically
with a bound electron as it exits the collision region, with
the result that both electrons are ejected into the contin-
uum. Its signature in the electron spectrum is flatter, although
it shows a preference for one slow and one fast electron
peak.

In single-photon double ionization, the knock-out domi-
nates at photon energies near the double-ionization threshold
[1,11,13], while the shake-off mechanism becomes dominant
for high photon energies. Both mechanisms appear also in the
double Auger decay, and it has been shown that the knock-out
mechanism dominates [7–9]. The ratios of the single-photon
double-ionization to single-ionization cross sections usually

amount to a few percentage points near the double-ionization
threshold [5,11,14–16]. The branching ratios of the double
to the normal Auger decay [7,8,13,17,18] are comparable to
the typical SPDI to single ionization ratios. For large photon
energies over 200 eV, these ratios can reach values up to 80%
in some systems [13,19].

In both of these processes, electron emission occurs at
the atom or molecule which absorbs the photon. However, a
nonlocal process was suggested [20], whereby the absorption
of a photon and emission of two electrons occur on different
weakly interacting species, specifically a guest atom and a C60

cage of an endohedral fullerene. For example, removing a 2p
electron of Mg in Mg@C60 creates an electronically unstable
state. As a result, C60 can be ionized in an electronic energy
transfer between the excited Mg+(2p−1) ion and the carbon
cage. For single ionization, this process is known as inter-
atomic Coulombic decay (ICD) [21–25]. However, since the
transferred energy in this example is larger than the double-
ionization threshold of C60, two electrons can be also emitted
into the continuum in a process, which was named double
interatomic (intermolecular) Coulombic decay (dICD) [20].

The dICD process is formally related both to the double
Auger decay and the single-photon double-ionization pro-
cesses. As in double Auger decay, a resonance state is present
whose decay leads to double-electron emission. In the above
example of Mg@C60, the magnesium atom is initially ionized
forming Mg+(2p−1). In the presence of C60, this ion can
transfer its excess energy [by relaxing to Mg+(3s−1)] to the
fullerene cage and doubly ionize it. ICD involves radiationless
energy transfer between the excited species and its neighbor,
which at large distances between them can be described as the
transfer of a virtual photon [26–29]. Since the absorption of
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the virtual photon by the neighbor leads to the emission of two
electrons, dICD is related to SPDI. As a result, the discussion
of the dICD process can be carried out in terms of the knock-
out, shake-off, and ground-state-correlation mechanisms.

The dICD process was recently demonstrated in exper-
iments on He droplets doped with alkali dimers [30]. The
droplets were irradiated by XUV photons which led to pho-
toexcitation of He atoms. The energy released in subsequent
relaxation of He was transferred to the dimers adsorbed on
the droplet’s surface which resulted in their ionization. The
electron spectra displayed peaks at lower and higher elec-
tron energy, which had the characteristic U-shape profile and
indicated that two electrons were emitted in concert in the
interatomic decay step. Apart from demonstrating the exis-
tence of dICD, the experiment showed that its efficiency is
comparable to that of ICD, so that the dICD to ICD branching
ratio is much larger than the branching ratios commonly seen
for the double Auger or SPDI processes.

Recently, resonant dICD in Li2+He was investigated the-
oretically [31]. Resonant photoexcitation of Li2+(1s → 2p)
leads to the transfer of its excess energy (91.8 eV) radia-
tionlessly to the neighboring atomic He, which is doubly
ionized. dICD was shown to be more efficient than SPDI
and for random interatomic orientation, it was found that the
averaged angular distribution of resonant dICD qualitatively
differs from the one of SPDI.

Motivated by these results of [20,30–32], we investigate in
the present work the general theory of the dICD process and
put it in relation to the common ICD process. For this pur-
pose, we derive the expression for the decay width of dICD,
�dICD. As a first step, we develop an asymptotic formula,
based on the assumption that the system initially carrying
the excess energy and its neighbor, which is doubly ionized
by the energy transfer process, are spatially well separated
and can be treated as independent entities. Beyond this ap-
proximation, we also derive a general analytical expression
for the T matrix of the dICD process employing many-body
perturbation theory in second order. The numerical evaluation
of the resulting expression is rather involved and beyond the
scope of the present work. Nevertheless, one can identify in
this expression several mechanisms which constitute dICD
and explicitly recover the asymptotic expression. Finally, we
discuss the dICD width and its ratio to the ICD width for a
palette of atomic and molecular systems making explicit use
of the derived asymptotic formula.

II. THEORETICAL FRAMEWORK

For simplicity, we consider a system consisting of two
species A and B separated by the distance R, whereby A and
B can be atoms or molecules. The initial electronic excitation
on species A is produced by removing an electron from an
inner-valence orbital. If the energy of the excited state is larger
than the double-ionization threshold of the combined system,
the resulting excited ion can decay via the dICD mechanism,
in which relaxation of the initial excitation is accompanied
by radiationless energy transfer and simultaneous ejection
of two electrons from the outer-valence shell of species B
into the continuum (see Fig. 1). Thus, the considered decay

FIG. 1. Simplified scheme of double interatomic (intermolec-
ular) Coulombic decay (dICD), where after the relaxation of the
initially electronically excited species A, two electrons of species B
are emitted simultaneously.

mechanism reads

A+∗ + B → A+ + B++ + e + e′,

where e and e′ are the two ICD electrons. Inner-valence
ionization of neutral species is not a unique mechanism for
producing electronically excited states, which might decay in
an interatomic process. Electronically excited neutral or mul-
tiply ionized atoms or molecules were shown to undergo ICD
[21,24,33–41]. However, to keep the presentation simple we
will continue the discussion in terms of the inner-valence ion-
ized states. The generalization to other types of excitations is
usually straightforward. The efficiency of dICD is determined
by its decay rate, and we present below some approaches for
its computation.

A. Asymptotic approach

In the following derivation, we assume that the interatomic
distance R is fixed. Following the excitation step, the sys-
tem A-B is found in a decaying electronic state |�D〉, which
comprises the excited inner-valence ionized species A+∗ and
the neighbor B. This decaying state lies energetically in the
double continuum corresponding to the relaxed ion A+ and
a doubly ionized state of B. We denote the energies of the
two electrons in the continuum as εk and εk′ . The final state
of the system can be written as |�Eγ ,ε,εk′ 〉, where Eγ is the
energy of the remaining ion (A+B2+) in the state γ , which is
accessible in the decay, and ε = εk + εk′ . The electronic part
of the final state at fixed R is energy-normalized in ε and εk′ ,
i.e., 〈�∗

E ′
γ ,ε′,ε′

k′
|�Eγ ,ε,εk′ 〉 = δγ γ ′ δ(ε − ε′)δ(εk′ − ε′

k′ ).

The differential partial decay width �Eγ
(ε, εk′ ) [3,6], which

corresponds to the decay of the state |�D〉 to the state
|�Eγ ,ε,εk′ 〉, is given by the following equation,

�Eγ
(ε, εk′ ) = 2π

∣∣〈�Eγ ,ε,εk′
∣∣Ĥ |�D〉∣∣2

, (1)

where Ĥ denotes the full electronic Hamiltonian, and neither
|�D〉 nor |�Eγ ,ε,εk′ 〉 is an eigenstate of Ĥ . By integrating
�Eγ

(ε, εk′ ) over εk′ , we get an expression for the decay width
which corresponds to one specific decay on A accompanied
by the emission of two electrons with the combined energy
ε from specific orbitals of B. We call this expression partial
decay width for a given channel,

�Eγ
(ε) =

∫ ε

0
�Eγ

(ε, εk′ ) dεk′ . (2)
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If the interatomic distance R between the two centers A
and B is considered in the limit R → ∞, several assumptions
become valid, and we will be able to derive an analytical
expression for the asymptotic decay width [26–29]. Thanks
to the large separation of A and B, the subsystems can be
seen as isolated, which allows us to approximate the states
of interest as direct products of the states of A and B. The
resulting expressions read

|�D〉 = ∣∣� (A)
D

〉 ∣∣� (B)
0

〉
, (3a)∣∣�Eγ ,ε,εk′

〉 = ∣∣� (A)
EγA

〉 ∣∣� (B)
EγB ,ε,εk′

〉
, (3b)

where |� (A)
D 〉 represents species A in an inner-valence ionized

state, while we assume that |� (B)
0 〉 is the ground state of

species B. The double ionization of species B by radiationless
energy transfer can then be conceptualized as proceeding via
absorbing a single virtual photon emitted in deexcitation of
A+∗. A final state of the system is a product of the energet-
ically accessible low-lying state of the ion A+, |� (A)

EγA
〉, and

a state |� (B)
EγB ,ε,εk′ 〉 which describes the doubly charged ion of

B2+ with two emitted electrons in the continuum.
The electronic Hamiltonian can be written as

Ĥ = ĤA + ĤB + ŴAB + V̂AB, (4)

where ĤA and ĤB are the full electronic Hamiltonians of
isolated A and B, respectively, ŴAB is the interaction of the
electrons of A with the nuclei of B and vice versa, and
V̂AB is the Coulomb interaction between the electrons of A
and B. The states of the isolated subsystems of A and B
are eigenstates of the Hamiltonians ĤA and ĤB, respectively.
The transition from |�D〉 to |�Eγ ,ε,εk′ 〉 is effected already in
second-order perturbation theory due to the interatomic (in-
termolecular) two-electron term V̂AB, while the coupling of the
excited state to the double continuum of the neighbor via the
one-particle operator ŴAB occurs in higher orders and can be
neglected.

We write the differential partial decay width as

�Eγ
(ε, εk′ ) = 2π

∣∣〈� (A)
EγA

∣∣ 〈� (B)
EγB ,ε,εk′

∣∣ V̂AB

∣∣� (A)
D

〉 ∣∣� (B)
0

〉 ∣∣2
. (5)

Before we evaluate the transition amplitude in Eq. (5) in the
asymptotic limit, we focus on the Coulomb operator V̂AB,
which is given as

V̂AB =
∑
i∈A

∑
j∈B

e2∣∣r(B)
j − r(A)

i

∣∣ . (6)

The corresponding system is schematically depicted in Fig. 2,
where the center of species A is placed at the origin, and the
vector R = R eR connects the centers of the species A and B.

The electron coordinates in A and B relative to the origin
are r(A)

i and r(B)
j , where i enumerates the electrons of A and

j enumerates the electrons of B. The vectors ri and ξ j are
the electron coordinates relative to the centers of A and B,
respectively. We assume that in the case of atoms their centers
coincide with the nuclei, while for molecules they are located
at the respective centers of electronic charge.

At large R, |r(A)
i | 	 |r(B)

j | holds and the Coulomb term
can be represented as multipole expansion, whereby only

R=ReR

ξ

B      A   

r(B)

e

e

r(A)r

e'

FIG. 2. Schematic configuration of species A and species B with
distance R. The coordinates r(A) and r(B) describe the positions of
electrons localized on A or B with respect to the species A, while r
and ξ are the corresponding coordinates to A and B, respectively.
Electron e receives the energy following the relaxation of A and
shares it with e′ by correlations.

the leading terms are retained. Inserting r(B)
j = R + ξ j into

Eq. (6) (see Fig. 2) and carrying out the multipole expansion
in powers of 1/R, one finds that the first term in Eq. (6) which
couples electrons of A and B behaves as 1/R3. The Coulomb
interaction now reads

V̂AB =
∑
i∈A

∑
j∈B

e2

|R + (ξ j − ri )|

≈ e2

R3

∑
i∈A

∑
j∈B

[ξ jri − 3(ξ jeR)(rieR)]. (7)

The approximate Coulomb interaction in Eq. (7) can be used
for evaluating the dICD transition amplitude

MFI = 〈
�

(A)
EγA

∣∣ 〈� (B)
EγB ,ε,εk′

∣∣ V̂AB

∣∣� (A)
D

〉 ∣∣� (B)
0

〉
≈ e2

R3

∑
i∈A

∑
j∈B

[〈
�

(A)
EγA

∣∣ri

∣∣� (A)
D

〉 〈
�

(B)
EγB ,ε,εk′

∣∣ξ j

∣∣� (B)
0

〉

− 3
〈
�

(A)
EγA

∣∣rieR

∣∣� (A)
D

〉 〈
�

(B)
EγB ,ε,εk′

∣∣ξ jeR

∣∣� (B)
0

〉]
. (8)

By introducing the dipole operators

D̂A = −
∑
i∈A

e ri, (9a)

D̂B = −
∑
j∈B

e ξ j, (9b)

which act only on the electron coordinates of either A or B,
we can write the interaction in a form that emphasizes the
dipole-dipole coupling between A and B clearly:

MFI = 1

R3

[
D(A)D(B) − 3(eR D(A) )(eR D(B) )

]
, (10)

where the transition dipole amplitudes D(A) and D(B) are

D(A) = 〈
�

(A)
EγA

∣∣D̂A

∣∣� (A)
D

〉
, (11a)

D(B) = 〈
�

(B)
EγB ,ε,εk′

∣∣D̂B

∣∣� (B)
0

〉
. (11b)

Choosing the z axis along the eR, we obtain the following
expression for the absolute value squared of the transition
amplitude:

|MFI|2 = 1

R6

∣∣D(A)
x D(B)

x + D(A)
y D(B)

y − 2 D(A)
z D(B)

z

∣∣2
, (12)
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where Dx, Dy, Dz denote the transition matrix elements
belonging to the corresponding component of the dipole oper-
ator.

In the following, we want to focus on a diatomic system
A-B. Therefore, the states of interest can be written in terms
of atomic quantum numbers:

|�D〉 = |γAEAJAMA〉 |γBEBJBMB〉, (13a)∣∣�Eγ εεk′
〉 = |γ ′

AE ′
AJ ′

AM ′
A〉 |γ ′

BE ′
BJ ′

BM ′
B〉, (13b)

where E is the energy of the respective atomic state, J is the
total angular momentum, M is its projection, and γ denotes
all other quantum numbers. Averaging over the projections of
the total angular momentum of A and B in the initial state, MA

and MB, and summing over the final states, M ′
A and M ′

B, gives
[42,43]

|MFI|2 = 1

2JA + 1

1

2JB + 1

∑
MAM ′

A

∑
MBM ′

B

|MFI|2

= 1

2JA + 1

1

2JB + 1

2

3 R6
|(γ ′

AE ′
AJ ′

A||D̂A||γAEAJA)

× (γ ′
BE ′

BJ ′
B||D̂B||γBEBJB)|2, (14)

where (γ ′E ′J ′||D̂||γ EJ ) stands for the reduced matrix ele-
ment [42]. In our case, we assume atom B initially in its
nondegenerate ground state with JB = 0; thus 1

2JB+1 reduces
to 1. Finally, the differential partial decay width averaged over
the projection of the angular momentum becomes

�Eβ
(ε, εk′ ) = 4π

3R6

1

2JA + 1
|(γ ′

AE ′
AJ ′

A||D̂A||γAEAJA)

× (γ ′
BE ′

BJ ′
B||D̂B||γBEB 0)|2. (15)

We use Eq. (15) to obtain the partial decay width �Eγ
(ε) [see

Eq. (2)]. By summing the latter over all final states, we obtain
the total decay width of dICD,

�dICD = 4π

3R6

∑
FAFB

∫ ε

0
dεk′

1

2JA + 1
|(γ ′

AE ′
AJ ′

A||D̂A||γAEAJA)

× (γ ′
BE ′

BJ ′
B||D̂B||γBEB 0)|2, (16)

whereby FA (FB) enumerates the energetically accessible final
states of A (B). In the special case where there is only one
suitable transition on A we can express the partial decay width
�dICD(ω) through experimentally measurable quantities of the
isolated subsystems A and B. To do that we write for the
radiative decay rate on atom A [42]

wA = 4ω3

3h̄c3

1

2JA + 1
|(γ ′

AE ′
AJ ′

A||D̂A||γAEAJA)|2, (17)

where the transition energy h̄ω is the energy of the virtual
photon:

h̄ω = E ′
A − EA = E ′

B − EB. (18)

The radiative lifetime which corresponds to the transition
(γAEAJA) → (γ ′

AE ′
AJ ′

A) on A reads

τA = 1

wA
. (19)

Furthermore, the transition moment |(γ ′
BE ′

BJ ′
B||D̂B||γBEBJB)|2

is replaced by the single-differential one-photon double-

ionization cross section of atom B, dσ++
B (ω)
dεk′ , in the length gauge

with photons of energy h̄ω [2–4],

dσ++
B (ω)

dεk′
= 4π2

3

ω

c

∑
FB

|(γ ′
BE ′

BJ ′
B||D̂B||γBEBJB)|2, (20)

where FB denotes all energetically possible final states on
B and |�B

0 〉 is the nondegenerate ground state of atom B.
The resulting formula for the partial decay width �dICD (ω)
of dICD in a system of two atoms defined by measurable
quantities for one specific virtual photon energy h̄ω finally
reads

�dICD (ω) = 3h̄

4π

(
c

ω

)4
τ−1

A σ++
B (ω)

R6
. (21)

Note that the partial decay width �dICD (ω) takes into account
different transitions on species B for one specific virtual pho-
ton energy, while the partial decay width for a given channel
�Eγ

(ε) considers for a given decay on A only one transition
on B.

In the asymptotic derivation of the partial decay width, the
dipole operators appear naturally in the length gauge, since
they arise through the expansion of the Coulomb interaction.
Therefore, whenever ab initio radiative lifetimes and single-
photon double-ionization cross sections are used in Eq. (21),
the length gauge should be preferred if the respective transi-
tion moments depend on the gauge chosen.

Furthermore, Eq. (21) is not only valid for atomic systems.
It is also valid for systems which consist of a decaying atomic
species and a molecular species as neighbor if we average over
the orientation of the molecule in space [44,45].

B. Many-body perturbation theory approach

In the following, we assume that the decay occurs in a
weakly bound cluster A-B, where the characteristic values of
R are a few angstroms, and where A and B mostly retain the
character of isolated species. In contrast to the derivation of
the ICD width, we have to use time-independent many-body
perturbation theory to obtain an expression for the decay
width �dICD. The electronic Hamiltonian is divided into an
unperturbed Hamiltonian Ĥ0 and an interaction Hamiltonian
ĤI , which describes the perturbation:

Ĥ = Ĥ0 + ĤI . (22)

We select Ĥ0 as the Hartree-Fock (HF) Hamiltonian and
ĤI = V̂ − v̂HF is the interaction Hamiltonian, which contains
the Coulomb operator V̂ and the average Hartree-Fock po-
tential v̂HF . The Hartree-Fock Hamiltonian is given as Ĥ0 =∑

i f̂ (ri ), where f̂ stands for a one-electron Fock operator and
the sum runs over all electrons in the system. The eigenfunc-
tions ϕn and eigenvalues εn of the Fock operator are the spin
orbitals and the orbital energies.

In the following, we consider N-electron systems with a
closed-shell electronic ground state. The decaying state is pro-
duced by removing an inner-valence electron, while the final
states consist of the triply ionized system with two electrons in
the continuum. To describe these states using the perturbation
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theory one needs one-hole (1h), one-particle-two-hole (1p2h),
and two-particle-three-hole (2p3h) unperturbed states. They
are constructed by acting with the physical excitation opera-
tors on the HF ground state |0〉:

|i〉 = ci|0〉, (23a)∣∣a
i j

〉 = c†
acic j |0〉, (23b)∣∣ab

i jk

〉 = c†
ac†

bcic jck|0〉, (23c)

where cn and c†
n are annihilation and creation operators for

an electron in the orbital ϕn. Thereby, the indices a and b
enumerate the particle orbitals and i, j, and k the hole orbitals.
Note that the indices refer to spin orbitals.

The unperturbed states are eigenstates of the unperturbed
Hamiltonian Ĥ0, according to

Ĥ0 |i〉 = (
E (0)

0 − εi
) |i〉 = E (0)

i |i〉, (24a)

Ĥ0

∣∣a
i j

〉 = (
E (0)

0 + εa − εi − ε j
) ∣∣a

i j

〉 = E (0)
ai j

∣∣a
i j

〉
, (24b)

Ĥ0

∣∣ab
i jk

〉 = (
E (0)

0 + εa + εb − εi − ε j − εk
) ∣∣ab

i jk

〉
= E (0)

abi jk

∣∣ab
i jk

〉
, (24c)

where E (0)
0 is the zeroth-order energy of the ground state:

Ĥ0 |0〉 = E (0)
0 |0〉.

As before, we derive the expression for the dICD width
for a cluster consisting of two weakly bound components A
and B, which we assume initially to be in their closed-shell
ground state. Because the bonding is weak for the R of in-
terest, the hole orbitals are just weakly perturbed orbitals of
isolated A and B. Therefore, we will retain the indices A and
B in denoting the orbitals, to indicate that they are mostly
localized on the respective species. The decaying state has a
hole in an inner-valence orbital ivA ≡ ivAη (η = ±1/2 is the
spin projection). In the final state there are three holes which
occupy the outer-valence orbitals ovA ≡ ovAλ, ovB ≡ ovBμ,
and ov′

B ≡ ov′
Bσ , while the two particles occupy the contin-

uum orbitals εk ≡ εkδ and εk′ ≡ εk′ν. We denote the initial
state as |�ivA〉 and the final state as |�εkεk′ ovAovBov′

B
〉, where the

spin indices are suppressed for clarity. The total spin of the
decaying state is S = 1/2, and it is conserved in the decay
since ĤI is spin-free.

Since the transition between the unperturbed decaying and
the final states is forbidden in first order, to obtain the dICD
transition amplitude we expand them in perturbation theory,

∣∣�ivA

〉 ≈ ∣∣ivA

〉 + Q̂D

E (0)
ivA

− Ĥ0

ĤI |ivA〉

= ∣∣� (0)
ivA

〉 + ∣∣� (1)
ivA

〉
, (25a)

∣∣�εkεk′ ovAovBov′
B

〉 ≈ ∣∣εkεk′
ovAovBov′

B

〉 + Q̂F

E (0)
εkεk′ ovAovBov′

B
− Ĥ0

× ĤI

∣∣εkεk′
ovAovBov′

B

〉
= ∣∣� (0)

εkεk′ ovAovBov′
B

〉 + ∣∣� (1)
εkεk′ ovAovBov′

B

〉
, (25b)

where Q̂D and Q̂F are projectors in the configuration space.
The transition amplitude between the initial 1h state |�ivA〉

and the final 2p3h state |�εkεk′ ovAovBov′
B
〉 becomes

T (2)
εkεk′ ovAovBov′

B:ivA
= 〈


εkεk′
ovAovBov′

B
|ĤI |� (1)

ivA

〉
+ 〈

�
(1)
εkεk′ ovAovBov′

B
|ĤI |ivA

〉
. (26)

To derive explicit expressions for the transition ampli-
tude we should first construct the projectors Q̂D and Q̂F .
They are of the form Q̂ = 1 − ∑

N |N 〉 〈N |, where the sum
runs over a subspace of configurations which we select in
a special way. First-order corrections are usually defined as
orthogonal to the respective unperturbed state [46]. The oper-
ators Q̂D and Q̂F ensure this orthogonality. We first note that
Q̂D must not include |ivA〉 〈ivA | and Q̂F must not include
|εkεk′

ovAovBov′
B
〉 〈εkεk′

ovAovBov′
B
|; otherwise the respective first-order

corrections in Eqs. (25a) and (25b) diverge. We also impose
the condition that the decaying and the final states are orthog-
onal [47], in our case through second order in perturbation
theory (for full details see Appendix A). The states as defined
above are already orthogonal through first order. To ensure
orthogonality in second order we first determine a set of
virtual states {|K〉} which couple the |ivA〉 and |εkεk′

ovAovBov′
B
〉

in second order. The configurations in this set cannot be si-
multaneously present in Q̂D and Q̂F . Therefore, one divides
them into two disjoint subsets, such that each subset enters
only one projector. As we discuss in Appendix A, division
into subsets is not unique, but leads to the same expression
of the transition amplitude. In addition one should remove
|εkεk′

ovAovBov′
B
〉 〈εkεk′

ovAovBov′
B
| and |ivA〉 〈ivA | from Q̂D and Q̂F ,

respectively.
We would like to remark that if orthogonality is not en-

forced the factor 2 appears in the transition amplitude, since
the same contributions come from the expansion of both the
initial and final states. The procedure outlined above and in
Appendix A leads to the results in conformance with the
perturbative expansion of the SPDI and the double Auger
amplitudes [2,3,6].

The resulting expression for the transition amplitude
T (2)

εkεk′ ovAovBov′
B:ivA

consists of eighteen terms, which can be in-
terpreted in terms of known physical processes. The complete
list of the terms and the details of their derivation can be found
in Appendix A. In the following, we discuss the structure
and the physical meaning of four characteristic terms. We
begin with the term which arises when the coupling proceeds
via the unperturbed virtual state

∑
pB

|pB
ovAovB〉 〈pB

ovAovB | (see
Table III, combination 1, in Appendix A). The sum

∑
pB

runs
over all particle orbitals of B including bound and continuum
states. The term reads

+
∑

pB

Vεkεk′ [ov′
B pB](

εk + εk′ − εov′
B
− εpB + i0+)VpBivAovBovA . (27)

After the electron transition from the outer-valence orbital ovA

to the inner valence orbital ivA, an electron of B is ejected
from the outer-valence orbital ovB. The emitted electron pB

interacts with another bound electron of B in the outer-valence
orbital ov′

B knocking it out, which leads to two electrons
εk and ε′

k in the continuum. This process encoded in the
amplitude in Eq. (27) [see Fig. 3(a)] can be interpreted as
an ICD step followed by knock-out ionization of B. The
energy denominator has a singularity for the limiting case, if
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ovA ovB εk εk ovB

(a)

ivA

pB

ovA εk ovB εk ovB

(b)

ivA

hB

FIG. 3. Diagrammatic representation of the dICD transition am-
plitudes which correspond to the knock-out (a) and the shake-off
(b) mechanisms. The horizontal lines represent the initial and the
final states. The dots denote the interaction. The arrows pointed
downward denote occupied (hole) orbitals, while the arrows pointed
upward denote unoccupied (particles) orbitals.

one of the emitted electrons takes the whole excess energy:
εpB = εk + εk′ − εov′

B
. Therefore, an infinitesimal imaginary

part +i0+ has to be added to the energy denominator. The
process is analogous to that describing the knock-out mecha-
nism in double Auger decay or SPDI, where it is the dominant
mechanism for photon energies near the double-ionization
threshold [2–10].

Next, we consider the term [see Fig. 3(b)] obtained by
inserting the unperturbed virtual state

∑
hB

|εk
ovAhB

〉 〈εk
ovAhB

|
into the dICD transition amplitude in Eq. (26) (see Table III,
combination 1, in Appendix A). The result reads

−
∑

hB

VivAεkovAhB

VhBεk′ [ovBov′
B](

εhB + εk′ − εovB − εov′
B

) , (28)

where the summation runs over all hole orbitals on B. The
first matrix element is the ICD amplitude, which corresponds
to the relaxation of the initial vacancy on A and the first
ionization of B. The second matrix element describes the
relaxation of B accompanied by the emission of the second
electron. In other words, following the energy transfer in ICD
the electron of B is ejected from hB to the continuum with
the energy εk . Because of this sudden ionization, the potential
on B changes rapidly, and the orbital relaxation leads to the
emission of another electron from ov′

B, which has the electron
energy εk′ ; see Fig. 3(b). This mechanism is analogous to
shake-off processes, which appear in double Auger and SPDI.

In the last two examples, we focus on the unperturbed vir-
tual 2p3h states,

∑
p1 p2h1h2h3

|p1 p2

h1h2h3
〉 〈p1 p2

h1h2h3
|. The presented

terms arise by inserting the unperturbed states |pBεk′
ovBov′

BivA
〉

and |εkεk′
ov′

BhBivA
〉 (see Table IV, configurations 5 and 3, in

Appendix A) into the dICD transition amplitude [see
Eq. (26)]:

−
∑

pB

VivAεkovA pB

VpBεk′ [ovBov′
B](

εpB + εk′ − εovB − εov′
B

) , (29)

+
∑

hB

Vεkεk′ [ov′
BhB](

εk + εk′ − εov′
B
− εhB

)VhBivAovBovA . (30)

ovA εk ovB εk ovB

(a)

ivA

pB

ovA ovB εk εk ovB

(b)

ivA

hB

FIG. 4. Diagrammatic representation of the dICD transition am-
plitudes which correspond to ground-state correlations: coupling via
particle orbital pB (a) and coupling via hole orbital hB (b). The
horizontal lines represent the initial and the final states. The dots de-
note the interaction. The arrows pointed downward denote occupied
(hole) orbitals and the arrows pointed upward denote unoccupied
(particles) orbitals.

Both terms include the electron transition from ovA to ivA

and the direct double ionization of B, where the coupling
between the two species proceeds in Eq. (29) via particle and
in Eq. (30) via hole orbitals. These two mechanisms can be
understood as stemming from the ground-state correlations
of the two species participating in dICD (see Fig. 4). These
double-ionization pathways due to ground-state correlations
are known for SPDI, where they arise from the perturbative
expansion of the ground state of an atom or a molecule being
ionized. Similar mechanisms also appear in double Auger
decay when unperturbed 2p3h states are used in the first-order
expansion of the core-hole state.

The transition amplitude T (2)
εkεk′ ovAovBov′

B;ivA
(see Appendix A)

refers to a specific set of spin orbitals. To construct the differ-
ential partial decay width �ovAovBov′

B
(ε, εk′ ) for a state-to-state

transition according to Eq. (15), one has to deal with both
spin and spatial degeneracies of the involving orbitals. This
means that for a final state characterized by spatial orbitals
ovA, ovB, and ov′

B one has to average over initial-state and to
sum over final-state degeneracies [42]. In the case of an atomic
system the orbitals ivA, ovA, ovB, and ov′

B are described by
orbital angular momenta l and the respective degeneracies are
given by the magnetic quantum numbers ml . Consequently,
the absolute value squared reads

∣∣T (2)
εkεk′ ovAovBov′

B;ivA

∣∣2 = 1

2 livA + 1

1

2 sivA + 1

×
∑

mlivA
mlovA

mlovB
mlov′

B

∑
ηλδνμσ

∣∣T (2)
εkεk′ ovAovBov′

B;ivA

∣∣2
.

(31)

It follows for the differential partial decay width according to
Eq. (15):

�ovAovBov′
B
(ε, εk′ ) = 2π

∣∣T (2)
εkεk′ ovAovBov′

B;ivA

∣∣2
. (32)
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By integrating the differential partial decay width over the
energy of one of the emitted electrons and by summing over
different degenerate final states of B we obtain the partial
decay width which corresponds to some virtual photon energy
h̄ω [see also Eq. (21)]:

�dICD(ω) =
∑

ovBov′
B

∫ ε

0
�ovAovBov′

B
(ε, εk′ ) dεk′ . (33)

For the total decay width of dICD, the summation over the
spin orbital ovA is added. The sum

∑
ovAovBov′

B
includes differ-

ent relaxation pathways of A and thus different virtual photon
energies. Consequently, it contains all energetically possible
transitions on B for the given virtual photon energies. The total
decay width of dICD reads

�dICD =
∑

ovAovBov′
B

∫ ε

0
�ovAovBov′

B
(ε, εk′ ) dεk′ . (34)

Once the values of the two-electron integrals and the or-
bital energies are known, the various widths can be computed
numerically.

C. Derivation of the asymptotic expression from the
perturbatively derived transition amplitude

In this subsection, we show that the expression �dICD in
Eq. (34) correctly reduces to Eq. (21) for R → ∞. The total
Coulomb operator V̂ is rewritten as

V̂ = V̂A + V̂B + V̂AB. (35)

V̂A and V̂B are the electron repulsion operators of A and B,
which are responsible for local processes, while V̂AB repre-
sents the interaction between the electrons of A and B. The
amplitudes, which involve electron transfer, decay exponen-
tially with R and can be neglected [48]. Furthermore, the
interaction Coulomb operator V̂AB is expanded [see Eq. (7)].
The effect of these two approximations is to reduce the num-
ber of terms in the transition amplitude from eighteen to eight,
see Appendix B, which represents the four different mech-
anisms: knock-out (KO), shake-off (SO), and the two types
of ground-state correlations (GSCp and GSCh) as described
above.

After the multipole expansion of the interaction Coulomb
operator V̂AB the Coulomb integrals of the surviving eight
terms of the form VpBivAhBovA read

VpBivAhBovA ≈ 1

R3

[ 〈
ϕivA

∣∣d̂A

∣∣ϕovA

〉 〈ϕpB |d̂B|ϕhB〉

− 3
〈
ϕivA

∣∣d̂AeR

∣∣ϕovA

〉 〈ϕpB |d̂BeR|ϕhB〉
]
. (36)

Inserting this expansion into the surviving eight terms
of the transition amplitude [see Eq. (B1) in Appendix B]
and averaging its absolute value squared over the degenera-
cies allows us to represent the width via quantities related
to isolated A and B. The dICD transition amplitude be-
comes a product of the dipole transition amplitude on A,
〈ϕivA |d̂A|ϕovA〉, and of the double-ionization amplitude of B,
T (KO) + T (SO) + T (GSCp) + T (GSCh). For details of the

derivation, see Appendix B. The total decay width of dICD
�dICD [see Eq. (34)] expressed by the various individual tran-
sition amplitudes reads

�dICD = 2π
2

3R6

∑
ovA

∣∣〈ϕivA

∣∣d̂A

∣∣ϕovA

〉∣∣2 ∑
ovBov′

B

∫ ε

0
dεk′

× ∣∣T (KO) + T (SO) + T (GSCp) + T (GSCh)
∣∣2

,

(37)

where the overlines denote that the absolute values squared of
the corresponding transition amplitudes are averaged over de-
generacies. T (KO) and T (SO) are respectively the knock-out
and the shake-off amplitudes, while T (GSCp) and T (GSCh)
appear due to the ground-state correlations. The sum of these
transition amplitudes equals the total amplitude of the SPDI
cross section [2,3]. Employing Eq. (20), we rewrite the single-
differential SPDI cross section to be in our nomenclature
[2–4]:

dσ++
B (ω)

dεk′

= 4π2

3

ω

c

∑
ovBov′

B

∣∣T (KO) + T (SO) + T (GSCp) + T (GSCh)
∣∣2

.

(38)

The explicit SPDI amplitudes in our nomenclature can be
found in Appendix C.

As in Sec. II A, the lifetime τA [see Eq. (19)] and the
single-differential single-photon double-ionization cross sec-

tion dσ++
B (ω)
dεk′ [see Eq. (38)] can be identified in the expression

for the dICD rate [see Eq. (37)]. As dσ++
B (ω)
dεk′ takes only one

virtual photon energy into account, one can consider a single
relaxation pathway of A and finally arrive at the asymptotic
partial decay width

�dICD(ω) = 3h̄

4π

(
c

ω

)4
τ−1

A σ++
B (ω)

R6
, (39)

which coincides with the expression for the dICD rate derived
above directly from the golden rule at large R [see Eq. (21) in
Sec. II A].

III. APPLICATIONS

In this section, we apply the asymptotic expression in
Eq. (21) to investigate dICD and compare its efficiency to that
of ICD and other decay processes. For ICD it has been shown
that at shorter distances R, where the respective asymptotic
expression loses its validity, the ICD rates obtained by this
expression can be much smaller than the precise rates due to
orbital overlap and can be seen as a lower bound to the latter
[26]. Since two electrons are emitted in dICD and thus at least
two orbitals of the neighbor are involved in the process, one
can expect that orbital overlap may have an even larger impact
on the rate than found for ICD. Thus, at smaller R, the rates
obtained by the asymptotic expression are also to be seen as
lower bounds to the precise, but yet unknown, rates.
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TABLE I. ICD and dICD rates for endohedral fullerenes. For each system the first row shows the data of the guest atom and the second
row the data of C60 at the respective virtual photon energy. The third row reports the desired rates for the respective endohedral fullerene. Note
that the dICD channel is not open for Ne@C60 due to the Coulomb repulsion in the final state. Evp is the excess energy (virtual photon energy),
wA is the radiative rate, τA is the respective radiative lifetime of the isolated guest atom, DIP is the double-ionization potential of C60, σ++

B and
σ+

B are the double- and single-ionization cross sections at the corresponding virtual photon energies, �ICD and �dICD are the ICD and dICD
decay rates, and τICD and τdICD are the resulting lifetimes due to the process indicated.

Ne@C60 R = 3.4 Å [49]

Ne+(2s12p6 → 2s22p5) Evp = 26.9 eV [52] wA = 5.5 × 109 1/s [52] τA = 1.9 × 10−10 s
C60 [53–55] DIP = 19 eV σ+

B = 5.7 × 102 Mb
ICD �ICD = 9.3 × 10−2 eV �ICD = 1.4 × 1014 1/s τICD = 7.1 × 10−15 s

Mg@C60 R = 3.5 Å [56]

Mg+(2p53s2 → 2p63s) Evp = 50.2 eV [52] wA = 4.7 × 109 1/s τA = 2.1 × 10−10 s [57]
C60 [53–55] DIP=19 eV σ++

B = 2.2 × 101 Mb σ+
B = 8.9 × 101 Mb

ICD �ICD = 8.6 × 10−4 eV �ICD = 1.3 × 1012 1/s τICD = 7.7 × 10−13 s
dICD �dICD = 2.1 × 10−4 eV �dICD = 3.2 × 1011 1/s τdICD = 3.1 × 10−12 s

He@C60 R = 3.3 Å [49]

He∗(1s2p → 1s2) Evp = 21.2 eV [52] wA = 1.8 × 109 1/s [52] τA = 5.6 × 10−10 s
C60 [53–55] DIP= 19 eV σ++

B = 1.4 Mb σ+
B = 1.2 × 103 Mb

ICD �ICD = 2.0 × 10−1 eV �ICD = 2.9 × 1014 1/s τICD = 3.5 × 10−15 s
dICD �dICD = 2.3 × 10−4 eV �dICD = 3.5 × 1011 1/s τdICD = 2.9 × 10−12 s

Following the first observation that dICD is possible in
Mg@C60 [20], we start the discussion with the fullerene C60

as a neighbor. It is well known that C60 and other fullerenes
accommodate foreign atoms and molecules [49–51]. Here,
we shall concentrate on the endohedral fullerenes Ne@C60,
Mg@C60, and He@C60.

We start with Ne@C60 after 2s ionization of Ne. The excess
energy (see Table I) is 26.9 eV and, of course, suffices to ion-
ize via ICD the C60 cage. However, due to the large Coulomb
repulsion of 8.4 eV between Ne+ and the resulting C++

60 , dICD
is just not possible. Here, the ICD rate has been computed by
ab initio methods [20] and we use this fact to compare the
result with that of the asymptotic expression. The asymptotic
expression for the ICD rate reads [26]

�ICD = 3h̄

4π

(
c

ω

)4
τ−1

A σ+
B

R6
. (40)

As can be seen from Table I, the lifetime of the Ne+(2s−1) ion
reduces from the lifetime of the isolated ion of 0.2 ns to only
7 fs due to ICD. The reported ab initio value is shorter and
amounts to 2 fs [20].

As noted in Ref. [20], the dICD channel is open in
Mg@C60 after 2p ionization of Mg. As indicated in Table I,
the excess energy of Mg+(2p−1) is over 50 eV and by far
suffices for dICD to take place. To be able to easily compute
the ICD and dICD rates, we present in the following the decay
width in practical units,

�dICD[eV] = 2.38×10−5 1

(Evp[eV])4

(τA[s])−1σ++
B [Mb]

(R[Å])6
,

(41)

as well as the relationship between lifetime and width,

τ [s] = 6.58×10−16 1

�[eV]
. (42)

The radiative lifetime of Mg+(2p−1) is 0.2 ns, while
due to ICD alone the lifetime of this ion inside C60 be-
comes 770 fs. Even dICD alone would reduce the lifetime
of Mg+(2p−1)@C60 to the ps time regime (3.1 ps). Clearly,
dICD is a relevant process in Mg@C60 after 2p ionization.
For completeness, we mention that the ion Mg+(2p−1), unlike
Ne+(2s−1), can also decay by autoionization [58,59].

Having seen that dICD can be an efficient decay pathway
in Mg@C60, we now turn to He@C60 where after the lowest
excitation 1s → 2p of He, ICD as well as dICD are open de-
cay channels. Since there is no Coulomb repulsion in the final
state, the excess energy of 21.2 eV is sufficient to trigger the
double ionization of C60 by energy transfer. Here, except for
radiative decay, there is no competition to ICD and dICD by
other decay mechanisms. ICD is very efficient for this system;
its lifetime is only 3.5 fs as compared to the radiative lifetime
of 0.56 ns in the isolated excited He atom. Keeping in mind
that the asymptotic expression overestimates ICD lifetimes,
the correct value might be sub-fs. dICD is also efficient and
would by itself lead the short lifetime of 0.29 ps, more than
two orders of magnitude shorter than the radiative lifetime.

Having seen that dICD, depending on the system and
neighbor chosen, can be an efficient process, orders of mag-
nitude faster than radiative decay, we concentrate in the
following on the ratio of the dICD and ICD rates. From the
asymptotic expressions for these rates, it is obvious that their
ratio is simply provided by the ratio of the double- to single-
ionization cross sections at the respective excess energy:

�dICD

�ICD
= σ++

B

σ+
B

. (43)

Consequently, the dICD to ICD ratio is determined by the
cross sections of the neighbor alone, while the state of the de-
caying system determines the photon energy at which these
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TABLE II. Ratio of the photoionization to single-photon double-
ionization cross sections for selected atoms and molecules. In the first
column are the atomic or molecular species listed, in the second are
their double-ionization potentials (DIP), in the third are the single-
photon double-ionization (SPDI) to photoionization (PI) ratios at
specific photon energies, and the last contains the corresponding
references. The photon energies are chosen as follows: 68.3 eV
corresponds to the 4d−1 vacancy of Xe and 47.5 eV, 36.5 eV, 28.5 eV,
and 275 eV give the highest cross section ratios of Be, Mg, Ca,
and selenophene, respectively, in the available range. Data at other
photon energies can be found in the respective references. The single-
photon double-ionization to photoionization ratios are ratios of the
respective cross sections or, if not available, ratios of the respective
doubly to singly charged ions; the second case is marked with an
asterisk (*).

Species DIP (eV)
σ++

B (ω)

σ+
B (ω)

(%) References

Na 52.4 0.9 (68.3 eV) [60–62]
K 36.0 40 (68.3 eV) [61]
Be 27.5 2.4 (47.5 eV) [14,15]
Mg 22.7 0.9 (36.5 eV) [5,14–16]
Ca 18.0 4.0 (28.5 eV) [14]
C6H6 26.1 23 (68.3 eV)* [19]
C6H6D3 26.0 5 (68.3 eV)* [13,19]
selenophene 24.2 80 (275 eV)*

10 (68.3 eV)* [13,19]
pyrrole 24.2 11.2 (68.3 eV)* [13,19]
furan 25.2 7.8 (68.3 eV)* [13,19]
naphthalene 21.4 9 (68.3 eV)* [13,19]
anthracene 20.1 13 (68.3 eV)* [13,19]
pentancene 18.6 31 (68.3 eV)* [13,19]
coronene 18.8 27.5 (68.3 eV)* [13,19,54]
pyrene 19.3 19 (68.3 eV)* [13,19,54]
C60 19.0 49 (68.3 eV) [53,55]

cross sections have to be taken. Having this in mind, we
discuss in the following further simple examples of systems
with high dICD to ICD ratios.

Table II gives an overview of doubly ionized species, their
double-ionization potential (DIP), and their single-photon
double-ionization (SPDI) to photoionization (PI) ratio at a
specific photon energy, and it lists the corresponding pub-
lications from which the data were taken. The SPDI to PI
ratio can be either the ratio of cross sections σ++

B /σ+
B or

the number of doubly to singly ionized ions M2+/M+. For
C60 the respective cross sections are available, but not for
the hydrocarbons listed. In the absence of autoionization, the
amount of singly and doubly charged ions is proportional to
their respective cross sections, and thus, the ratio of doubly
to singly charged ions is equivalent to the ratio of the SPDI
to PI cross sections and we will not distinguish between them
in the following [11,19,63–66]. The photon energy of 68.3 eV
used in most of the entries of the table is the excess energy
of Xe+(4d−1) and just chosen as an example. Many more
values are available in the literature cited. Before proceeding
with the discussion, a short comment on the ratios of Mg
and Ca in the table is in order. Both ratios are the highest
ones in the measured or calculated photon energy range. The
SPDI cross section of Mg is measured and calculated from

threshold to about 54 eV [5,14–16,54,67] and the ratio reaches
its highest point of 0.9% at 36.5 eV. The ratio for Ca is
calculated up to 43 eV and has its highest value of 4% at
28.5 eV [14,67].

As seen in Table II, aromatic hydrocarbons—benzene,
naphthalene, anthracene, pentacene, pyrene, coronene, pyr-
role, furan, and selenophene—are suitable neighbors and offer
rather low-lying double-ionization thresholds, ranging from
18.6 eV to 26.1 eV. These molecules play an important role
in astrophysics [68–70]. Experimental investigations as in
Refs. [13,19] show that the ratios of doubly charged to singly
charged ions can reach values up to nearly 80% (selenophene)
for photon energies above 200 eV. For a photon energy of
68.3 eV, which is the excess energy of the 4d−1 vacancy of Xe,
the ratio is much smaller, but still reaches 23% for benzene,
31% for pentacene, and even 49% for C60.

For even smaller excess energies, the SPDI to PI ratio
typically further decreases. Nevertheless, dICD can still be
efficient. In the following, we discuss briefly two sets of
examples. In the first, the decaying system is Ne+ in the state
2s22p4(1D)3s which has an excess energy of 30.5 eV [52]
and its radiative rate is wA = 1.4 × 109 1/s [71]. This state
is populated by Auger decay [72–74].

We focus on the systems Ne+-coronene, Ne+-pyrene,
and Ne+-pentacene. Intermolecular distances between Ne+

and aromatic hydrocarbons typically range from 3 Å to
3.5 Å [75–77]. Coronene has a double-ionization threshold of
18.8 eV, while pyrene has one of 19.3 eV. Their ratios of SPDI
to PI or the dICD to ICD ratio at 30.5 eV are about 5.9% and
9%, respectively [13,19,54]. The double-ionization threshold
of pentacene lies at 18.6 eV and the SPDI to PI ratio at 30.5 eV
reaches 10% [13,19,54]. Even for photon energies near the
threshold, the dICD to ICD ratios are sizable for aromatic
hydrocarbons. We would like to stress that Ne+ in the state
2s22p4(1D)3s cannot undergo autoionization and hence there
are no competitive processes present.

In the second set of examples, we combine the excited
(1s → 2p) helium ion He+ [78] with coronene, pyrene, and
pentacene. This ion has been utilized to investigate ICD in the
extreme He dimer [79,80]. The 2p → 1s transition provides
an excess energy of 40.8 eV. The dICD to ICD ratios for this
virtual photon energy become 13.7% for coronene, 12.1% for
pyrene, and even 19% for pentacene [13,19,54]. These high
ratios make clear that dICD can be a significant percentage
of ICD for photon energies not close to the double-ionization
threshold.

Since SPDI can be large at larger photon energies (see, e.g.,
selenophene in Table II), the dICD to ICD ratio can become
very large for these energies. However, as the excess energy
enters the asymptotic expression to the fourth power in the
denominator, the absolute impact of dICD is still expected to
be small at high values of the energy. Large virtual photon
energies are present in core ionization and excitation pro-
cesses which preferentially decay by Auger. In clusters and
the condensed phase, however, core ICD competes with Auger
decay. In rare gas clusters, the ICD to Auger decay ratio has
recently been found to nevertheless amount to around 1% in
Ar and to a few percent in Xe clusters [78,81]. The timescale
of the core level ICD was determined to be 33 fs for the 2p
core hole of aqueous Ca2+ implying that the ICD to Auger
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decay ratio can be around 10% [82]. All of this gives hope
that dICD may be a relevant process in core ionization and
excitation in extended systems.

After having demonstrated that dICD can be a significant
decay channel depending on the system and its neighbor, we
discuss the influence of several neighbors. For ICD it has been
shown that the decay width of the system increases with in-
creasing number N of the surrounding neighbors [34,83–85].
A linear behavior with N was found in NeHeN and CaHeN

clusters [84], while in Na+(H2O)N and Mg2+(H2O)N it was
shown that the decay width deviates from a linear behavior
[85], due to the polarization of water by the charged ions.
Each water molecule becomes polarized by the alkali ion
and shields the ion’s charge from the other water molecules.
Every additional water molecule becomes less polarized due
to the shielding of the charge and gives a smaller contri-
bution to the total ICD width. Consequently, further water
molecules get less and less polarized and their contributions
decrease with increasing N. The effect increases for higher-
charged ions. However, for a small number of neighbors,
a linear increase of the ICD width scaling with N can be
assumed [84,85]. From the asymptotic equation, one obtains
a linear growth with the number N of equivalent neighbors
of the rate of dICD as well as long as the neighbors do
not interact with each other. Once the neighbors do interact
with each other and/or the intermolecular distances are too
short for the asymptotic expression to be valid, the dICD
rate grows with N, but the behavior as a function of N will
depend on the situation at hand and has still to be investi-
gated.

For completeness, we finally briefly mention other inter-
atomic or intermolecular processes where two electrons can
be emitted. As explained above for Ne@C60, the excess en-
ergy of Ne after 2s ionization is insufficient for dICD to take
place. However, another process can take place which has
been termed dETMD [20] (ETMD stands for electron trans-
fer mediated decay [48]). The process Ne+(2s−1)@C60 →
Ne@C3+

60 + 2e− gives rise to a neutral Ne and a triply charged
C60 cage, whereby two electrons have been emitted in concert
[20]. Doubly excited states, for instance of He [86,87], pos-
sess sufficient excess energy to undergo dICD with various
neighbors. Since two electrons are excited, the process is
expected to be sequential rather than nonsequential in this
case. Another interesting two-step process can also take place
with doubly excited species. The doubly excited species can
first autoionize and the resulting ion can then undergo ETMD
with a neighbor [88]. As a consequence, two electrons have
been emitted, one from the species carrying the excess energy
and one from the neighbor.

IV. CONCLUSIONS

The double-ionization mechanism by interatomic or inter-
molecular Coulombic decay, briefly called dICD, is investi-
gated. For large separations between the atom or molecule
carrying the excess energy and its neighbor, an explicit asymp-
totic expression for the decay rate of dICD has been derived
which solely depends on experimentally measurable quanti-
ties. This decay width provides a lower bound to the full dICD
width and is a useful estimate of the exact total dICD width.

The asymptotic expression is applied to several examples
showing that dICD is a relevant decay channel. Within the
asymptotic expressions, the dICD to ICD ratio corresponds
to the ratio of the cross sections of single-photon double and
single ionization. The knowledge of this ratio for various pho-
ton energies can thus help to choose atoms and molecules for
which the ratio of dICD to ICD is favorable. The probability
that an atom absorbs a resonant photon and emits a virtual
photon is much higher than that to directly double-ionize an
atom or molecule by the same photon. Consequently, doubly
ionizing a system in an environment via dICD can become
a more relevant process than SPDI. As for ICD, it is argued
that the dICD rate grows substantially with the number of
neighbors which can be doubly ionized by the available excess
energy. This fact can make dICD important in true environ-
ments where the number of available neighbors is usually
high.

Apart from the analysis of the asymptotic expression, we
developed an analytical expression for the scattering T matrix
of dICD which is valid for smaller distances between the
species by using many-body perturbation theory. This results
in a comprehensive expression for the total decay width of
dICD, allowing one to distinguish various different intra- and
interatomic and molecular processes. To further analyze the
resulting perturbative decay width, we considered it in the
limit of separated subsystems, which reduces the expression
to the asymptotic formula. While the asymptotic dICD width
accounts only for processes like knock-out, shake-off, and
ground-state correlations, which are familiar from the discus-
sion of the single-photon double ionization, the perturbative
dICD width contains further mechanisms which are impor-
tant at shorter interatomic distances. A different ab initio
method (Fano-ADC), which belongs to a family of ab initio
techniques for computing electronic decay widths, has been
successfully applied to various ICD processes [89–92]. Re-
cently, an ADC(2,2) approximation was introduced which has
the potential to describe dICD of energetic singly ionized
states [32]. Further development and implementation of these
numerical techniques is necessary to investigate the qualita-
tive and quantitative influence of these additional processes.
It is beyond the scope of the present work and is left for the
future.

We briefly mention what one could calculate in addition
to the rates once the many-body perturbation theory is im-
plemented. The ejected electron spectra can be computed
by using the differential partial decay width [Eq. (32)]. It
should be clear that this can only be done after the many-body
perturbation theory is implemented, which is a large effort
by itself because of the two electrons in the continuum and
that not for a spherical system. To compare with experiment
one has also to take into account the impact of the nuclear
motion in the dICD undergoing system as done before for
ICD. This requires additional method development. However,
in many cases a comparison can be done without the in-
clusion of the nuclear motion if we assume instantaneous
decay and small energy broadening due to the distribution
of the interatomic distances in the vibrational wave packet
compared to the total energy of the two emitted electrons.
Both assumptions hold for the systems we considered. The
total decay width is of order of several meV and is larger than
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the characteristic frequencies in the decaying state, while the
total energy of the emitted electrons is larger than several eV.
Under these assumptions we may resort to Eq. (32) as such.
Beyond the dICD electron spectra, triply differential cross
sections can be computed as well from the absolute value
squared of the dICD amplitude [see Eq. (31)] analogously to
the case of the one-photon double-ionization process as shown
in [93–95].

We hope our work will prepare the ground for further
discussion and research into dICD.
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APPENDIX A: TRANSITION AMPLITUDE OF dICD
VIA MANY-BODY PERTURBATION THEORY

In this Appendix, we present the complete second-order
transition amplitude of our system T (2)

εkεk′ ovAovBov′
B

which com-
prises eighteen terms and we explain how it is structured. As
discussed in Sec. II B, we impose the condition that our decay-
ing state |ivA〉 and our final state |εkεk′

ovAovBov′
B
〉 are orthogonal.

The orthogonality condition is automatically fulfilled for ze-
roth and first order. Since our transition amplitude is second
order, the initial and final states have to be also orthogonal
through second order, which is equivalent to setting the fol-
lowing scalar products to zero:

〈
�

(0)
εkεk′ ovAovBov′

B

∣∣� (2)
ivA

〉 = 〈


εkεk′
ovAovBov′

B

∣∣ Q̂D

E (0)
ivA

− Ĥ0

ĤI
Q̂D

E (0)
ivA

− Ĥ0

ĤI

∣∣ivA

〉
, (A1a)

〈
�

(2)
εkεk′ ovAovBov′

B

∣∣� (0)
ivA

〉 = 〈


εkεk′
ovAovBov′

B

∣∣ĤI
Q̂F

E (0)
εkεk′ ovAovBov′

B
− Ĥ0

ĤI
Q̂F

E (0)
εkεk′ ovAovBov′

B
− Ĥ0

∣∣ivA

〉
, (A1b)

〈
�

(1)
εkεk′ ovAovBov′

B

∣∣� (1)
ivA

〉 = 〈


εkεk′
ovAovBov′

B

∣∣ĤI
Q̂F

E (0)
εkεk′ ovAovBov′

B
− Ĥ0

Q̂D

E (0)
ivA

− Ĥ0

ĤI

∣∣ivA

〉
. (A1c)

This is achieved by constructing specific projectors Q̂D

and Q̂F , which we write as Q̂ = 1 − ∑
N |N 〉 〈N |, where

the sum over N runs over some selected subspace of con-
figurations. Many-body perturbation theory dictates that Q̂D

and Q̂F do not contain |ivA〉 and |εkεk′
ovAovBov′

B
〉, respectively,

which otherwise would result in vanishing energy denomina-
tors. To ensure that the first two expressions in Eqs. (A1a)
and (A1b) are zero we introduce further restrictions on the
projection operators and exclude |εkεk′

ovAovBov′
B
〉 〈εkεk′

ovAovBov′
B
| and

|ivA〉 〈ivA | from Q̂D and Q̂F , respectively. To make the third
expression [Eq. (A1c)] vanish we first determine all virtual
states |K〉 such that the amplitude 〈� (1)

εkεk′ ovAovBov′
B
|� (1)

ivA
〉 =

〈εkεk′
ovAovBov′

B
| ĤI

E (0)
εk εk′ ovAovBov′

B
−Ĥ0

|K〉 〈K | ĤI

E (0)
ivA

−Ĥ0
|ivA〉 is nonzero.

The contributing virtual states are 1p2h and 2p3h states, listed
in Tables III and IV. 1h states would vanish, because the con-
tribution of the averaged potential v̂HF and the one-particle
contribution of the Coulomb operator V̂ cancel each other
in the Hartree-Fock approximation: 〈n|ĤI |ivA〉 = vHF

n ivA
+∑

k Vnk[ivA k] = 0 [96,97]. Note that one of the holes of the
2p3h states has to be ivA, so that only four spin orbitals change
during one transition and the coupling to the initial 1h state
|ivA〉 via the two-particle Coulomb operator is possible.

To ensure orthogonality in second order, the above config-
urations of the inserted virtual states cannot be simultaneously
present in Q̂D and Q̂F . Therefore, we divide the set |N 〉 into
two disjoint subsets which are included either in Q̂D or in Q̂F .
The choice of the subsets is not unique, but it does not affect
the expression for the transition amplitude. In the following,

we want to show two different possibilities for dividing into
subsets.

In the first division, we use the definition of a bound state
in continuum. The decaying state |�ivA〉 is such a state, which
means it should decay exponentially for ri → ∞ (ri is the
spatial coordinate of electron i). By allowing continuum states
into the decaying state expansion this boundary condition
cannot be fulfilled any longer. Therefore, we select Q̂D such
that no continuum states can appear in the decaying state
expansion. Consequently, Q̂D does not include virtual states
as in Tables III and IV, while Q̂F comprises them all.

In the second division, we follow the many-body per-
turbation theory treatment of the double Auger and SPDI
processes [2,3,6]. Therefore, we remove all 1p2h states (see

TABLE III. Virtual 1p2h states which couple the initial and final
state in second order. Free index h (p) runs over all occupied (unoc-
cupied) orbitals.

∑
p

∑
h

1 p
ovAovB


εk
ovAh

2 
p
ovBov′

B


εk
ovBh

3 
p
ov′

BovA


εk
ov′

Bh

4 
εk′
ovAh

5 
εk′
ovBh

6 
εk′
ov′

Bh
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TABLE IV. Virtual 2p3h states which couple the initial and final
state in second order. Free index h (p) runs over all occupied (unoc-
cupied) orbitals.

∑
p

∑
h

1 
εk p
ovAovBivA


εkεk′
ovAhivA

2 
εk p
ovBov′

BivA


εkεk′
ovBhivA

3 
εk p
ov′

BovAivA


εkεk′
ov′

BhivA

4 
pεk′
ovAovBivA

5 
pεk′
ovBov′

BivA

6 
pεk′
ov′

BovAivA

Table III) from Q̂D and all 2p3h states (see Table IV) from
Q̂F . This procedure is in conformity with the derivation of
transition amplitudes for double Auger and SPDI. In dou-
ble Auger including the corresponding 1p2h and 2p3h states

results in negligible contributions to transition amplitudes
due to large energy denominators and small Coulomb inte-
grals. In the description of the SPDI process, the initial state
contains no 1p2h configurations due to Brillouin’s theorem
[96], while in the final-state expansion the 2p3h configura-
tions do not contribute because they do not couple to the
ground state via the dipole operator (see Appendix C). If
we consider the asymptotic dICD amplitude [see Eq. (21)
in Sec. II A] this procedure for constructing the SPDI states
directly translates into the second division of the set |N 〉.
We would also like to mention that without enforcing orthog-
onality through second order, an additional factor 2 appears
in the transition amplitude, because the perturbative expan-
sions of the initial and the final states produce the same
contribution.

Returning to the derivation of the transition amplitude, we
insert the resolution of unperturbed states into Eq. (26) and
evaluate the Coulomb integrals. The transition amplitude is
finally given by

T (2)
εkεk′ ovAovBov′

B;ivA
=

∑
p

[
Vεk εk′ [ov′

B p]

εk + εk′ − εov′
B
− εp + i0+Vp ivA [ovA ovB] + Vεk εk′ [ovA p]

εk + εk′ − εovA − εp + i0+Vp ivA [ovB ov′
B]

+ Vεk εk′ [ovB p]

εk + εk′ − εovB − εp + i0+Vp ivA [ov′
B ovA]

]
+

∑
h

[
−VivA εk [ovA h]

Vh εk′ [ovB ov′
B]

εh + εk′ − εovB − εov′
B

− VivA εk [ovB h]
Vh εk′ [ov′

B ovA]

εh + εk′ − εov′
B
− εovA

− VivA εk [ov′
B h]

Vh εk′ [ovA ovB]

εh + εk′ − εovA − εovB

+ VivA εk′ [ovA h]
VhB εk [ovB ov′

B]

εh + εk − εovB − εov′
B

+ VivA εk′ [ovB h]
VhB εk [ov′

B ovA]

εh + εk − εov′
B
− εovA

+ VivA εk′ [ov′
B h]

Vh εk [ovA ovB]

εh + εk − εovA − εovB

]

+
∑

p

[
VivA εk′ [ov′

B p]
Vp εk [ovA ovB]

εp + εk − εovA − εovB

+ VivA εk′ [ovA p]
Vp εk [ovB ov′

B]

εp + εk − εovB − εov′
B

+ VivA εk′ [ovB p]
Vp εk [ov′

B ovA]

εp + εk − εov′
B
− εovA

− VivA εk [ov′
B p]

Vp εk′ [ovA ovB]

εp + εk′ − εovA − εovB

− VivA εk [ovA p]
Vp εk′ [ovB ov′

B]

εp + εk′ − εovB − εov′
B

− VivA εk [ovB p]
Vp εk′ [ov′

B ovA]

εp + εk′ − εov′
B
− εovA

]
+

∑
h

[
Vεk εk′ [ovA h]

εk + εk′ − εovA − εh
Vh ivA [ovB ov′

B]

+ Vεk εk′ [ovB h]

εk + εk′ − εovB − εh
Vh ivA [ov′

B ovA] + Vεk εk′ [ov′
B h]

εk + εk′ − εov′
B
− εh

Vh ivA [ovA ovB]

]
. (A2)

The total expression for the perturbative dICD transition
amplitude in Eq. (A2) is structured as follows. The first two
sums feature the coupling of the initial hole state to the 1p2h
states (as in Fig. 3), whereby the first sum over particle
orbitals in the continuum has a singularity as explained in
Sec. II B. The first sum over particle orbitals and the second
over hole orbitals are the knock-out and the shake-off am-
plitudes, respectively. The 3rd and 4th sums correspond to
the coupling to the unperturbed 2p3h states with one hole in
ivA (as in Fig. 4) and belong to the ground-state-correlation
mechanisms.

APPENDIX B: THE LIMIT R → ∞ OF THE
PERTURBATIVELY DERIVED EXPRESSION FOR �dICD

In the following, we want to show the perturbatively
derived transition amplitude in the various processes of
A and B for R → ∞ in more detail than in Sec. II B.
Assuming a large distance R between the species makes
several assumptions valid. All terms with a Coulomb in-
tegral corresponding to electron transfer, as for example

+∑
p Vεk εk′ [ovA p]( 1

εk+εk′ −εovA −εp+i0+ )Vp ivA [ovB ov′
B], can be ne-

glected because they decay exponentially with R. The second
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Coulomb integral describes electron transfer independent
of the localization site of p. Note that other Coulomb
integrals also describe electron transfer, if the appearing
sum runs only over hole or particle states of A, like

in −∑
hA

VivA εk [ovA hA]VhA εk′ [ovB ov′
B](

1
εhA +εk′−εovB −εov′

B

) [compare

Eq. (28)], while the sum of states on B by itself gives a
nonvanishing contribution. If electron transfer is neglected
the Coulomb exchange terms presenting nonlocal processes

vanish, too. In this case, the corresponding antisymmetriza-
tion brackets in the 4-index integrals can be skipped. We
expand the interaction Coulomb operator V̂AB [see Eq. (35)]
and take the leading term which behaves as R−3. Concerning
B, only matrix elements presenting local processes are left,
which are independent of R. Therefore, all leading terms are
combinations of an interaction between A and B and a local
process on B and scale as R−3. In these approximations, the
transition amplitude, Eq. (B1), takes on the form

T (R→∞)
εkεk′ ovAovBov′

B;ivA
=

∑
pB

[
− Vεk εk′ [ov′

B pB]

εk + εk′ − εov′
B
− εpB + i0+VpB ivA ovB ovA + Vεk εk′ [ovB pB]

εk + εk′ − εovB − εpB + i0+VpB ivA ov′
B ovA

]

+
∑

hB

[
−VivA εk ovA hB

VhB εk′ [ovB ov′
B]

εhB + εk′ − εovB − εov′
B

+ VivA εk′ ovA hB

VhB εk [ovB ov′
B]

εhB + εk − εovB − εov′
B

]

+
∑

pB

[
VivA εk′ ovA pB

VpB εk [ovB ov′
B]

εpB + εk − εovB − εov′
B

− VivA εk ovA pB

VpB εk′ [ovB ov′
B]

εpB + εk′ − εovB − εov′
B

]

+
∑

hB

[
Vεk εk′ [ovB hB]

εk + εk′ − εovB − εhB

VhB ivA ov′
B ovA − Vεk εk′ [ov′

B hB]

εk + εk′ − εov′
B
− εhB

VhB ivA ovB ovA

]
. (B1)

The Coulomb integrals describing the interaction between A and B read

VpBivAhBovA =
∫∫

ϕ∗
ivA

(
r(A)

)
ϕ∗

pB

(
r(B)

) e2∣∣r(B) − r(A)
∣
∣

ϕovA (r(A) )ϕhB (r(B) ) dr(A)dr(B). (B2)

As described above, the interaction Coulomb operator can be multipole-expanded for R → ∞ [see Eq. (7)], where the
expansion is broken off after the dipole term, which is the first giving a contribution. Choosing eR = ez and inserting the
expansion v̂AB ≈ e2/R3[ξr − 3(ξeR)(reR)] into Eq. (B2) gives

VpBivAhBovA ≈ 1

R3

[〈
ϕivA

∣∣d̂x
(A)∣∣ϕovA

〉 〈
ϕpB

∣∣d̂x
(B)∣∣ϕhB

〉 + 〈
ϕivA

∣∣d̂y
(A)∣∣ϕovA

〉 〈
ϕpB

∣∣d̂y
(B)∣∣ϕhB

〉 − 2
〈
ϕivA

∣∣d̂z
(A)∣∣ϕovA〉

〈
ϕpB

∣∣d̂z
(B)∣∣ϕhB

〉]
, (B3)

where d̂x, d̂y, and d̂z are the components of the one-particle dipole operator. The Coulomb integrals of the form VpBivAhBovA in
Eq. (B1) are replaced by the approximation of Eq. (B3). For simplicity, we only show the transformations of the perturbative
amplitude by the first term of Eq. (B1), P1. The procedure is analogous for the other terms and thus, we can later generalize our
findings to get the total transition amplitude. After inserting the expansion of the interaction Coulomb operator, P1 becomes

P1 = 1

R3
T1 = 1

R3

[〈
ϕivA

∣∣d̂x
(A)∣∣ϕovA

〉
T (B)

x + 〈
ϕivA

∣∣d̂y
(A)∣∣ϕovA

〉
T (B)

y − 2
〈
ϕivA

∣∣d̂z
(A)∣∣ϕovA

〉
T (B)

z

]
. (B4)

T (B)
x , T (B)

y , and T (B)
z can be identified as the components of

the single-photon double-ionization transition amplitude (see
Refs. [2,3]) describing the knock-out mechanism:

T (B)
x =

∑
pB

〈ϕpB |d̂x
(B)∣∣ϕovB

〉 Vεk εk′ [ov′
B pB]

εk + εk′ − εpB − εov′
B
+ i0+ ,

(B5a)

T (B)
y =

∑
pB

〈ϕpB |d̂y
(B)∣∣ϕovB

〉 Vεk εk′ [ov′
B pB]

εk + εk′ − εpB − εov′
B
+ i0+ ,

(B5b)

T (B)
z =

∑
pB

〈ϕpB |d̂z
(B)∣∣ϕovB

〉 Vεk εk′ [ov′
B pB]

εk + εk′ − εpB − εov′
B
+ i0+ .

(B5c)

For an atomic system, the absolute value squared of the tran-
sition amplitude T1 in Eq. (B4) is averaged and summed over
the spin and spatial degeneracies of the initial and the finals
state, respectively,

|T1|2 = 1

2 livA + 1

1

2 sivA + 1

∑
mlivA

mlovA
mlovB

mlov′
B

∑
ηλδνμσ

|T1|2, (B6)

where mixed terms vanish and quadratic terms give the same
contribution, which leads to an additional factor 6 due to six
quadratic terms of the transition amplitude. Therefore, we can
rewrite Eq. (B6) in terms of the z component as

|T1|2 = 6
∣∣ 〈ϕivA

∣∣d̂z
(A)∣∣ϕovA

〉
T (B)

z

∣∣2
. (B7)
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Using the fact that the three components of the dipole
operators give the same contribution allows us to rewrite

| 〈ϕivA |d̂z
(A)|ϕovA〉 |2 = (1/3)| 〈ϕivA |d̂A|ϕovA〉 |2 and |T (B)

z |2 =
(1/3)|T B|2 in terms of the full dipole operators. Finally, the
first term P1 [compare Eq. (B4)] of Eq. (B1) reads in its

reduced form

P1 = 2

3R6
| 〈ϕivA |d̂A|ϕovA〉 T B|2. (B8)

Returning to the complete transition amplitude and generaliz-
ing it gives

∣∣T (R→∞)
εkεk′ ovAovBov′

B;ivA

∣∣2 = 2

3R6

∣∣〈ϕivA

∣∣d̂A

∣∣ϕovA

〉
[T (KO) + T (SO) + T (GSCp) + T (GSCh)]

∣∣2
. (B9)

As shown in Appendix C using many-body perturbation theory using the present nomenclature, T (KO), T (SO), T (GSCp),
and T (GSCh) of Eq. (B9) are transition amplitudes (see Refs. [2,3]) of single-photon double ionization. The four transition
amplitudes belong to the different mechanisms: knock-out (KO), shake-off (SO), and ground-state correlations (GSCp/GSCh).
The transition amplitudes read

T (KO) =
∑

pB

[〈
ϕpB

∣∣d̂B

∣∣ϕovB

〉 Vεk εk′ [ov′
B pB]

εk + εk′ − εpB − εov′
B
+ i0+ − 〈

ϕpB

∣∣d̂B

∣∣ϕov′
B

〉 Vεk εk′ [ovB pB]

εk + εk′ − εpB − εovB + i0+

]
, (B10)

T (SO) =
∑

hB

[〈
ϕεk

∣∣d̂B

∣∣ϕhB

〉 VhB εk′ [ovB ov′
B]

εk′ + εhB − εovB − εov′
B

− 〈
ϕεk′

∣∣d̂B

∣∣ϕhB

〉 VhB εk [ovB ov′
B]

εk + εhB − εovB − εov′
B

]
, (B11)

T (GSCp) =
∑

pB

[〈
ϕεk′

∣∣d̂B

∣∣ϕpB

〉 VpB εk [ovB ov′
B]

εk + εpB − εovB − εov′
B

− 〈
ϕεk

∣∣d̂B

∣∣ϕpB

〉 VpB εk′ [ovB ov′
B]

εk′ + εpB − εovB − εov′
B

]
, (B12)

T (GSCh) =
∑

hB

[〈
ϕhB

∣∣d̂B

∣∣ϕov′
B

〉 Vεk εk′ [ovB hB]

εk + εk′ − εovB − εhB

− 〈
ϕhB

∣∣d̂B

∣∣ϕov′
B

〉 Vεk εk′ [ov′
B hB]

εk + εk′ − εovB − εhB

]
. (B13)

The transition amplitude of SPDI consists of these four processes. The corresponding single-differential partial SPDI cross
section is given by

dσ++
B (ω)

dεk′
= 4π2

3

ω

c

∑
ovBov′

B

|[T (KO) + T (SO) + T (GSCp) + T (GSCh)]|2 (B14)

and describes the single-photon double ionization of species
B for photon energy h̄ω.

APPENDIX C: DERIVATION OF THE SPDI TRANSITION
AMPLITUDE BY MANY-BODY PERTURBATION THEORY

The derivation of the dICD decay width is explained
in the main text and the above appendices in much de-
tail. Now, we want to derive the perturbative expression of
the SPDI transition amplitude, which is already well known
[2,3], in our nomenclature for the species B. As usual, the
unperturbed initial and final state are Hartree-Fock ground
states of B with annihilation and creation operators acting on
them,

|0〉 = ∣∣B
0

〉
, (C1)∣∣εkεk′

ovBov′
B

〉 = c†
εk

c†
εk′ covB cov′

B

∣∣B
0

〉
, (C2)

where B is initially in its ground state and finally doubly
ionized, the two emitted electrons being indicated by εk and
εk′ and the resulting holes by ovB and ov′

B. Again, the Hartree-
Fock approximation is applied in the context of perturbation
theory. The initial and final states in zeroth order give no
contribution. To obtain the transition amplitude T (2)

εkεk′ ovBov′
B

of
SPDI, the states have to be expanded perturbatively through

first order:

T (2)
εkεk′ ovBov′

B
= 〈


εkεk′
ovBov′

B

∣∣D̂B
Q̂0

E (0)
0 − ĤB

0

ĤB
I

∣∣B
0

〉

+ 〈


εkεk′
ovBov′

B

∣∣ĤB
I

Q̂εkεk′ ovBov′
B

E (0)
εkεk′ ovBov′

B
− ĤB

0

D̂B

∣∣B
0

〉
. (C3)

Here, the first term is the initial-state expansion and the sec-
ond term the final-state expansion. Q̂0 and Q̂εkεk′ ovBov′

B
are

projection operators of the form Q̂ = 1 − ∑
N |N 〉 〈N | of

the configurations ivA and εkεk′ovAovBov′
B. D̂B and ĤI are

the dipole operator and the interaction Hamiltonian of B,
respectively. The resolution of the unperturbed states in the
form 1 = ∑

N |N 〉 〈N |, where N denotes the different con-
figurations, is inserted to achieve the full expression of the
SPDI transition amplitude. Formally, 1p1h and 2p2h states
can be inserted. A closer look at the initial state expansion
makes clear that only 2p2h states give a nonvanishing con-
tribution. Matrix elements like 〈p1

h1
|ĤI |0〉 vanish, because

in Hartree-Fock, 〈p1

h1
|ĤI |0〉 = vHF

p1 h1
+ ∑

k Vp1k[h1 k] = 0, as
known from Brillouin’s theorem [96]. In the final-state expan-
sion only 1p1h states contribute, while for 2p2h-state terms
the transition matrix elements vanish, 〈εkεk′

ovBov′
B
|D̂B|0〉 = 0,
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as D̂B is a one-particle operator. After inserting the resolution
of unperturbed states and evaluating the respective matrix
elements, one gets the following expression for the SPDI
transition amplitude:

T (2)
εkεk′ ovBov′

B
=

∑
pB

[
Vεk εk′ [ov′

B pB]

εk + εk′ − εov′
B
− εpB + i0+ DpB ovB

− Vεk εk′ [ovB pB]

εk + εk′ − εovB − εpB + i0+ DpB ov′
B

]

+
∑

hB

[
Dεk hB

VhB εk′ [ovB ov′
B]

εhB + εk′ − εovB − εov′
B

−Dεk′ hB

VhB εk [ovB ov′
B]

εhB + εk − εovB − εov′
B

]

+
∑

pB

[
−Dεk′ pB

VpB εk [ovB ov′
B]

εpB + εk − εovB − εov′
B

+Dεk pB

VpB εk′ [ovB ov′
B]

εpB + εk′ − εovB − εov′
B

]

+
∑

hB

[
− Vεk εk′ [ovB hB]

εk + εk′ − εovB − εhB

DhB ov′
B

+ Vεk εk′ [ov′
B hB]

εk + εk′ − εov′
B
− εhB

DhB ovB

]
. (C4)

The first two sums arise from the final-state expansions
and can be identified as knock-out and shake-off mechanisms.
The knock-out terms have singularities, because εpB = εk +
εk′ − εovB/εov′

B
and therefore, +i0+ is inserted into the energy

denominator. The last two sums come from the initial-state
expansion and describe the ground-state correlations. Before

the single-differential partial cross section dσ++
B (ω)
dεk′ is derived,

one has to average over the initial-state degeneracies, which
is omitted in the case of the nondegenerate ground state, and
sum over the final-state degeneracies (see Appendix B).
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