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Soft interlayers based on membranes and biopolymers define the spatial boundaries between different
phases in biological systems. Physical interactions of soft matter under biologically relevant conditions (in
aqueous media containing various ions) are governed by complex interplays of generic and specific interfa-
cial interactions, which are clearly different from those acting at the interface between hard matter. This re-
view aims at providing a comprehensive overview on: (a) models of cell–cell and cell–tissue interfaces with
aid of defined building blocks, (b) new X-ray and neutron scattering techniques to probe fine structures, elec-
trostatics, and mechanics of soft interfaces, and (c) control of dynamic cell morphology and migration of cells
using tailor-made, soft interfaces.

© 2013 The Author. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In biological systems, boundaries between many phases are defined
by “soft interlayers”, such asmembranes and biopolymers,which are im-
mersed in physiological electrolytes. For example, biological membranes
are vital components that define the outer boundary of living cells to the
surrounding environments as well as that of cell compartments (organ-
elles) in cytoplasmic space. Theirmain constituent is a bilayer lipidmem-
brane that sustains lateral fluidity, and a variety ofmembrane-associated
proteins facilitate communication and transport on/across the mem-
brane. From the view point of material science, membranes serve as
smart filters that confine many processes in the compartments (organ-
elles). Here, toxic substances are kept out of the cell, while specific nutri-
ents, wastes and metabolites can pass across the membranes to reach
their destinations. On the other hand, if one sheds light on membranes
from a biochemical point of view, many important biological processes
are regulated at membrane surfaces, through interactions between pe-
ripheral and integral membrane proteins.

1.1. Importance of interfaces in biological systems

Why does nature need/use interfaces? In the 70's, Hardt [1] showed
a relatively simple answer to the question by extending the steady state
erms of the Creative Commons
which permits non-commercial
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sical Chemistry, University of
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of diffusion-limited reactions described by Smoluchowski, and repre-
sented the mean diffusion time τ for three body collision in two- and
three-dimensions:

τ2Dh i ¼ x2

2D
ln

x
r

� �
and τ3Dh i ¼ x3

3Dr
: ð1Þ

D is the diffusion coefficient, r the radius of diffusing particles, and x
the separation distance between two particles. The dependence of
mean diffusion time on the particle radius r is 〈τ2D〉 ∝ − ln(r) for
two-dimensional systems, while 〈τ3D〉 ∝ r−1 in three-dimensional sys-
tems. A clear difference in the dependence of τ on r indicates the
energetic and thus economic reasons why many biochemical reactions
are confined in 2D membranes.

1.2. Free energy minimization by soft interfaces

As a general starting point, let us consider interactions between two
biological interfaces (e.g. two neighboring cellmembranes) as those be-
tween two planes that keep a finite separation distance via a thin spac-
er.When a separation distance is large, the interlayer retains its intrinsic
bulk properties. Here, a change in the interlayer thickness at a constant
phase volume does not cost any energy penalty, as all individual inter-
faces follow the classical Gibbs capillary theory. In contrast, any change
in the interlayer thickness costs energy if the long-range force fields
overlap within interlayers.

In order to analytically describe the thermodynamics of thin liquid
films, Derjaguin introduced a simple measure, called disjoining pres-
sure [2]. Disjoining pressure Π is defined as the excess of the external
pressure that must be applied to the fluid interlayer between the plates
served.
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in order to keep a finite distance. Practically,Π is nothing but the sum of
the all individual forces acting per unit area, which can experimentally
be determined bymeasuring the external pressures to keep the separa-
tion distance constant. The disjoining pressure can be defined in terms
of the lateral density of Gibbs free energy at constant temperature
T: Π(d) = − (∂ G/∂ d)T, where d is the interlayer thickness (Fig. 1).

In order to keep a finite separation distance d between two planes,
the free energy minimization coincides with the condition of Π = 0.
When the interaction is weak, the interfacial interaction potential
V(d) can be approximated by a harmonic potential according to the in-
verse work functional theory as the probability function of the spacing
distance follows the Boltzmann distribution: V(d) ∝ − kT ln P(d).

On the other hand, the continuous thinning of the interlayer re-
sults in collapse/dewetting of the interlayer. Typical examples in ma-
terial science are the rupturing of polymer and surfactant films [3,4].

2. Model cell membranes on soft surfaces: “polymer-supported
membranes”

As experimental models of cell surfaces, phospholipid bilayers de-
posited onto planar solid substrates (so-called “solid-supported mem-
branes”) have commonly been used for almost 30 years [5••,6••,7].
Supportedmembranes retain both the lateral fluidity and excellentme-
chanical stability. They do not only enable one to probe the structural
and dynamic properties of membranes with various surface-sensitive
techniques, but also allow for in vitro modeling of cell–cell recognition.
Solid-supported membranes have the drawback of being confined in
the close proximity of solid substrates. Here, the separation via a very
thin water reservoir (thickness: 5–20 Å) is not sufficient to prevent
large transmembrane proteins from coming into direct contact with
the bare substrate.

This problem can be avoided by separating membranes and solid
substrates using soft interlayers based on hydrated polymers [8••,9].
In nature, interactions between cells and tissues are mediated by
complex interplays of short-range and long-range forces across hy-
drated layers of carbohydrate-based biopolymers, such as extracellu-
lar matrix and cell surface glycocalyx. They keep a finite distance
(typically in the range of 10–100 nm) between neighboring cells to
avoid direct, non-specific cell–cell contacts as well as to create hydro-
dynamic pathways for solute transport.

2.1. Roles of soft interfaces (1): wetting, lateral fluidity

The deposition of a lipid bilayer onto a hydrated polymer support
can energetically be favored only if the presence of a membrane re-
sults in the gain of Gibbs free energy of the whole system. For exam-
ple, the stability of a liquid film on a surface can be characterized by a
Fig. 1. Models of cell–extracellular matrix contacts by the deposition of a two-dimensional
acting per unit area (disjoining pressure) coincides with the excess pressure to maintain th
spreading coefficient S within the basic framework of wetting physics:
[10] S = γSV − (γSL + γLV). Here, γSV is the free energy of the solid/
vapor interface, γSL at solid/liquid interface, and γLV liquid/vapor inter-
face. Compared to solid-supported membranes, the presence of poly-
mer supports assists the self-healing of local defects in the membrane
to cover macroscopically large substrates (~cm2) [11].

Within the framework of Saffman and Delbrück's approach [12••],
the translational diffusion coefficient of a cylindrical particle (radius
Rp) immersed in a quasi-2D continuum is written as:

De kBT
4πηmh

ln
ηmh
ηwRp

−γ

 !
: ð2Þ

ηw and ηm are the viscosities of medium (water) and membrane
given in [Pa s], h the thickness of membrane and hence the height
of a particle, and γ Euler's constant γ = 0.5772. Such a logarithmic
law suggests a relatively little dependence of D on the particle radius
Rp, which agrees well with experimental findings [13].

To model the lateral diffusion lipids and proteins in contact with
viscous, asymmetric environments (e.g. glycocalyx and cytoskeleton),
it is necessary to consider asymmetric boundary conditions (Fig. 2).
Evans and Sackmann [14] expressed the diffusion coefficient D as a
function of the dimensionless particle radius of diffusing particle ε:

D ¼ kT
4πηmh

1
4
ε2 þ εK1 εð Þ

K0 εð Þ
� �−1

: ð3Þ

K0 and K1 are modified zero and first order Bessel functions of the
second kind. In contrast to the description in Eq. (2), the diffusion
constant is much more strongly dependent on the particle size. It
should be noted that ε can analytically be obtained from the dimen-
sionless particle mobility m = 4πηmD/kBT, which can be determined
from the diffusion coefficient D. The frictional coefficient bs can be
given by the membrane viscosity ηm, membrane thickness h, and
the ratio between ε and the radius of transmembrane domain
Rp: bs = ηmh(ε/Rp)2. Namely, once Rp is known, one can determine
the significance of frictional stress exerted on proteins. This enables
one to nail down how the thickness and density of polymer interlayers
influence the friction exerted on transmembrane receptor proteins in a
quantitative manner [15•].

2.2. Roles of soft interfaces (2): modulation of interfacial forces

If one takes lipids and polymers that carry no net charges
(e.g. zwitter-ionic lipids and neutral polymer chains, Fig. 3a), one can
identify the three major long-range forces (pressures) that dominate
cell membrane on a polymer support (polymer-supported membrane). The net force
e finite distance between two planes.



Fig. 2. (a) Lateral diffusion of membrane proteins in a supported membrane. The fric-
tional coupling between a cylindrical particle and the substrate is modulated by the
presence of a soft interlayer. (b) Particle mobility plotted as a function of dimension-
less particle radius within the frameworks of (i) the Saffman–Delbrück's continuum
model (ε b 0.1), (ii) the strongly coupled model (ε N 0.1), and (iii) the modified theory
derived by Evans and Sackmann. The experimental results from integrin receptors in
polymer-tethered membranes at low and high tether densities can be well explained
by the Evans–Sackmann model.
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interfacial interactions: (a) van der Waals pressure, (b) hydration re-
pulsion, and (c) undulation repulsion originating from the thermody-
namic fluctuation of the membrane.

First, the van der Waals pressure in the presence of a polymer
interlayer can be calculated on the basis of an asymmetric five layer
model as a function of interlayer thickness d [16]. If one takes a silicon
wafer as a substrate, layer 1 and 2 are the bulk crystalline silicon and
silicon dioxide (thickness T1), respectively. Layer 3 consists of the
Fig. 3. (a) A schematic illustration of a “polymer-tethered” membrane incorporating lipi
polymer-tethered membrane: van der Waals pressure is indicated by broken gray line and
the experimental data. The error range is indicated by two fitting curves (solid gray lines). Th
P = 0 predicts the equilibrium distance dth (blue bar), showing a reasonable agreement wit
Note that van der Waals pressure is displayed with opposite sign in the panel.
polymer spacer, layer 4 is the lipid membrane with thickness T2 and
layer 5 is bulk water. With this model, PvdW(d) can be written as:

PvdW dð Þ ¼ 1
6π

A234

d3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A121A343

p
dþ T1ð Þ3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A545A323

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A545A121

p
dþ T1 þ T2ð Þ3
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Aijk stands for the Hamaker constant of medium i interacting with
medium j through medium k.

The second, hydration pressure Phyd(d) [17••], is a consequence of
the work necessary for removingwater from a hydrated layer to the in-
finitely thick, bulk liquid phase. Phyd(d) exponentially decays over a dis-
tance, parameterized by a pressure constant P0 and a characteristic
decay constant λH: Phyd(d) = P0 exp(−d/λH). The values for P0 and
λH can be obtained by measuring the equilibrium thicknesses of the
polymer layer at different osmotic pressures.

The repulsive pressure originating from thermodynamic undula-
tions [18••,19] adjacent to the wall Pund(d) is given as a function of
the bending rigidity of membrane κ:

Pund dð Þ ¼ α1
kBTð Þ2
κd3

: ð5Þ

As presented in Fig. 3b, the generic roles of polymer interlayers in
modulating the membrane–substrate contact can be verified by com-
paring the calculated equilibrium distance by extrapolation of the
sum of three forces to zero (blue bar) and the membrane–substrate
distance experimentally determined by elliposometry and specular
X-ray reflectivity (red bar) [20]. This suggests that the balance be-
tween attractive van der Waals pressure and hydration repulsion
play dominant roles in stabilizing membranes at finite distances
from underlying substrates.

2.3. Two-dimensional cell membranes: soft interface facilitates complete
wetting

Polymer supported membranes enable proteins to fully retain their
mobility and native functionality. For example, when probing the inter-
action between polymer-supported membranes incorporating integrin
receptors and giant vesicles exposing specific ligand molecules, the ad-
hesion free energy and thus the binding energy for the interaction is
comparable to the value inferred from the integrin–ligand dissociation
constant. However, the orientation and the population of transmem-
brane proteins in native cell membranes are stringently controlled,
ds with linear polymer head groups. (b) The calculated force–distance curves of the
thermal fluctuation by a dotted line. The hydration pressure can be obtained by fitting
e sum of three forces yields disjoining pressures (black solid lines). The extrapolation to
h the experimentally determined equilibrium membrane–substrate distance (red bar).

image of Fig.�3
image of Fig.�2


Fig. 5. (a) Schematic illustration of GIXF and XRR/GIXOS setup. (b) The electron density
profiles reconstructed from XRR/GIXOS results, while concentration profiles from target
elements (in this case, S-atom from recombinant cadherin) can be calculated from GIXF.
Note that precise determination of electron density profiles from XRR/GIXOS is necessary
for quantitative GIXF analysis.
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and it is difficult to incorporate complex and concentrated protein mix-
tures into supported membranes.

This can be overcome by spreading native cell membrane extracts
onto planar substrates, which has first been demonstrated by the depo-
sition of human erythrocyte “ghost cells” (after removal of intracellular
components) on 10 nm thick, hydrated cellulose cushions [21•]. As de-
scribed in the previous session, the formation of defect-freemembranes
that selectively expose the cytoplasmic surface can be attributed to the
fine adjustment of interface tensions (wetting condition) and the bal-
ance of interfacial forces acting in the direction perpendicular to the
membrane surface (Fig. 4a). By contrast, the deposition of cell mem-
branes on positively charged polyelectrolyte films results in the pinning
of membrane patches, which can be interpreted as the dewetting
caused by too strong electrostatic attractions (Fig. 4b). This suggests
that the use of highly charged polyelectrolytes as polymer support
[22,23] is feasible for synthetic lipid membranes but not for native cell
membranes. In fact, even the fabrication of cellmembrane arrays is pos-
sible by introducing “wetting contrasts” either by lithographic
micro-patterning of polymer supports or by “stamping” proteins on
polymer supports [24].

3. Interfacial interactions via membrane-anchored glycans

A variety of carbohydrates are covalently anchored to the head
groups of lipids (e.g. phosphatidylinosytol, ganglioside, etc.) and pro-
teins (glycoproteins) on the outer surface of biological cells [25].
These saccharide moieties serve not only as mechanical stabilizers sus-
taining the structural integrity of cell membranes but also as specific li-
gands for various receptor proteins (e.g. lectin family) in various
inter-cellular communications. In fact, after the era of genomics and
proteomics, the systems and integrated strategy to understand the
structure–function relationships in glycans (called “glycomics”) is a
newly emerging scientific field [26]. However, despite significant pro-
gresses from chemical biology and system biology approaches, physics
of glycans is still poorly understood.

3.1. Physical roles glycans (1): structures and electrostatics

Glycans on the outer surfaces of bacteria, such as lipopolysaccharides
(LPSs) of Gram-negative bacteria, protect the membrane against chemi-
cal attacks by cationic antibacterial peptides (CAPs) and antibacterial
drugs. Since many in-vivo studies demonstrated that divalent cations
(Ca2+, Mg2+) significantly increase the survival rate of bacteria [27], it
is highly important to study the influence of mono- and divalent ions
on the fine-structures and electrostatics of glycans.

To highlight the roles of glycans, monolayers of lipopolysaccharides
from various bacteria strains at the air/water interface are a defined, bi-
ologically relevant model of bacterial outer membranes. The fine-
structures of LPS monolayers perpendicular to the membrane surface
can be gained either by specular X-ray reflectivity (XRR) or by grazing
incidence X-ray scattering out of specular plane (GIXOS) (Fig. 5a)
Fig. 4. A native supported membrane spread on a polymer support. (a) Immunofluores-
cence staining of a human erythrocyte membrane with the antibody to the cytoplasmic
domain of Band III denotes the exposure of the “inside” to the bulk. (b) The corresponding
image on a cationic polyelectrolyte (polylysine) support suggests strong attractions cause
the “de-wetting” of cell membranes.
[28•]. In GIXOS measurements, a monochromatic synchrotron beam il-
luminates the monolayer at an incident angle slightly below the critical
angle of the air/water interface. The intensity of the scattered beam is
collected with a position sensitive linear detector perpendicular to the
monolayer surface at an azimuth angle near the incidence plane
(q|| ~ 0.03 Å−1). GIXOS signals can be collectedwithoutmoving the de-
tector in specular geometry, which offers a special advantage over XRR.
This reduces the radiation time by a factor of 100 and thus minimizes
the radiation damage. In case in-plane momentum transfer is very
small (q|| ~ 0) and interface roughness is conformal, the measured dif-
fuse intensity is connected to the corresponding reflectivity curve
[28]. This enables one to detect conformational changes in glycans
from the electron density profiles in the presence and absence of Ca2+

[29,30]. However, the GIXOS/XRR merely yields the electron density
profile but not “ion specific” density profiles.

One experimental breakthrough to get insight into the electrostat-
ics of soft, charged interfaces is grazing-incidence X-ray fluorescence
(GIXF) [31•,32]. In GIXF measurements, the monolayer is illuminated
at incidence angles αi below and above the critical angle of total re-
flection, αC. At αi b αc, the illuminated volume significantly depends
on αi, since the penetration depth of the evanescent field is given by:

Λ αið Þ ¼ λX‐rayffiffiffi
8

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
i −α2

c

� �2 þ 4β2
q

− α2
i −α2

c

� �	 
−1
2

: ð6Þ

λX-ray is the wavelength of the incident beam, and β the imaginary
part of the refractive index n = 1 − δ + iβ. On the other hand, the
incidence beam penetrates into the bulk at αi N αc. The fluorescence
intensity collected as a function of αi yields the density profiles of tar-
get element/ions:

Iflu αið ÞeZ
∞

0

Iill z;αið Þc j zð Þ exp −z=Lið Þdz: ð7Þ

cj(z) is the concentration of element j at a depth z and Li is the at-
tenuation length of water. It should be pointed out that parallel
GIXOS/XRRmeasurements are necessary for quantitative calculations,

image of Fig.�4
image of Fig.�5


436 M. Tanaka / Current Opinion in Colloid & Interface Science 18 (2013) 432–439
since the illumination profile Iill(z,αi) in ultrathin films significantly
depends on the electron density (and thus the scattering length den-
sity δ) of each layer. The combination of GIXOS/XRR and GIXF opens a
new potential to determine not only ion density profiles with high ac-
curacy [33••] but also the lateral density of recombinant proteins
bound to the membrane surface (Fig. 5) [34].

3.2. Physical roles of glycans (2): mechanics

Glycans on membrane surfaces are specifically recognized not
only by carbohydrate-binding receptors but also by complementary
carbohydrates expressed in inter-cellular communication, such as
the cell aggregation via homophilic interactions during embryonic
development [35]. However, the influence of glycans on mechanics
of interacting membranes, such as inter-membrane potentials and
bending rigidity, have hardly been studied in a quantitative manner.

X-ray and neutron scattering techniques have been widely used
to investigate the physical characteristics of biological membranes.
Especially, specular and off-specular scattering of stacks of planar
membranes offers a unique advantage over commonly used powder
diffraction experiments of lipid suspensions, as the planar geometry
of supported membranes enables one to identify in-plane and
out-of-plane momentum transfers [36••,37•,38,39]. Experiments at
controlled humidity enable one to examine the influence of the
disjoining pressure on the inter-membrane interactions, while ex-
periments in bulk buffers (i.e., in the absence of external osmotic
stress) reveal the effect of solute molecules (e.g. ions, co-solvents)
on membrane mechanics (Fig. 6).

In kinematic approximation, the scattering from periodical mem-
brane stacks which possess correlated roughness can be expressed
as a function of the displacement correlation function gk(r) [40••]:

S qz; qjj
� �

∝

1
q2z

N
Z∞
−∞

e−q2z g0 rð Þ=2e−iqjjrdr þ 2
XN
k¼1

N−kð Þ cos kqzdð Þ
Z∞
−∞

e−q2z gk rð Þ=2e−iqjjrdr

24 35;
where gk rð Þ ¼ d2

π2 ηC

Z∞
2π=R

1− Jo qjjr
� �

exp −λDkq
2
jjd

� �h i
qjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

Dd
2

4
q4jj

s dqjj:

ð8Þ

gk(r) can be characterized by de Gennes parameter λD and Caillé
parameter ηC. Here, binding/unbinding transition of interacting mem-
branes in the perpendicular direction can generally be described as
Peierls–Landau instability.
Fig. 6. (a) Stacks ofmembranes coupled to carbohydrate head groups on planar supports (supp
to the planar geometry, the momentum transfers parallel and perpendicular to the membrane
Within the framework of the discrete smectic Hamiltonian [41•],
the vertical inter-membrane interaction potential is characterized
by the compression modulus B, and the bending elasticity of the
membranes by the membrane bending modulus κ:

H ¼
Z
A

d2r
XN−1

n¼1

B
2d

unþ1−un

� �2 þ κ
2

∇2
xyun

� �2� �
: ð9Þ

N is the total number ofmembranes, d the equilibriumdistance, A the
covered area, and un the local out-of-plane displacement of the nthmem-
brane from its average vertical position. It should be noted that two key
parameters in the displacement correlation function, λ and Caillé param-
eter η, are directly correlated to B and κ: ηC∝1=

ffiffiffiffiffiffi
κB

p
and λD ¼ ffiffiffiffiffiffiffiffiffi

κ=B
p

.
Therefore, the simulation of the scattering signal enables one to deter-
mine the mechanical properties of the membranes. The specular/
off-specular scattering of multilayers of glycolipids, ranging from syn-
thetic glycolipids [42,43] to LPSs purified from bacterial mutant strains
[44•], is a straightforward strategy to physically model influences of mo-
lecular chemistry, solutemolecules, and genetic mutation of membrane-
bound glycans on B and κ.

4. Control of biological cells with tailor-made material interfaces

A natural extension of this field is to understand how livings cells
and tissues would feel their environments via soft interfaces. In the
last decades, an increasing number of studies also provided compel-
ling evidence that biological cells have the capability of sensitively
responding not only to their biochemical environment but also to
their mechanical environment [45••]. These findings strongly suggest
that the design of tailor-made, soft interfaces is essential for the
mechanistic understanding of cellular functions as well as for the con-
trol of cells via distinct commands.

4.1. Dynamic cell morphology with supported membranes

Owing to the excellent capability to minimize the non-specific pro-
tein adsorption and cell adhesion, supported membrane systems have
been used as the model of surrogate cell surfaces to study a variety of
cellular processes, such as formation of inflammatory reactions of
T-cells [5,46••]. If one utilizes recombinant proteins or ligand molecules
“tagged”with biotin and histidine tags, one can easily functionalize sup-
ported membranes simply by incorporation of anchor lipids. A special
interest exists in utilizing supported membranes as quantitative in vitro
models to discriminate different cell phenotypes that were genetically/
epigenetically modified by diseases and development.

For example, the growth and metastasis of tumors are highly dy-
namic processes that are regulated by the interaction of hyaluronic
acid (HA) with glycoprotein CD44 [47]. In fact, enzymatic degradation
ortedmultilayers) as themodel of cell–cell contactsmediated by carbohydrates. (b) Owing
surface can easily be identified.

image of Fig.�6


Fig. 7. (a) A snap shot of a pancreatic cancer cell on an oligo-HA-functionalized membrane captured by micro-interferometry. The peripheral edge of the cell was determined by the
contrast in pixel intensity. (b) The amplitude of fluctuation amplitude R(θ,t) = r(θ,t) − 〈r(θ,t)〉θ plotted as a function of θ. 〈r(θ,t)〉θ is the mean radial distance over θ = 0–360°.
Amplitude R(θ,t) map of representative (c1) non-metastatic and (d1) metastatic cancer cells plotted as function of θ recorded over time. The corresponding autocorrelations are
presented in panel (c2) and (d2), respectively.
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of poly-HA and accumulation of oligo-HA are associated with poor pa-
tient prognosis, which causes the increase in tumor proliferation, inva-
sion, and angiogenesis. To mechanistically understand how CD44-HA
interactions physically influence cancer metastasis, supported mem-
branes displaying oligo-HA at defined surface densities can be used as
a well defined in vitro model of surrogate cell surfaces [48•]. Such
model systems allow the discrimination of phenotypes expressing dif-
ferent CD44 variants by measuring the area of tight adhesion zones
using non-invasive reflection interference contrast microscopy [49].
Moreover, by calculating autocorrelation functions of the fluctuation
amplitude of cell rims [50], it is possible to distinguish a difference in
spatio-temporal patterns of metastatic and non-metastatic cancer
cells hidden behind the stochastic noise of dynamic cell morphology
Fig. 8. (a) Physical gels based on triblock copolymer micelles that undergo reversible mechan
soft (E = 1.4 kPa, left) and stiff (E = 40 kPa) after 24 h, showing a clear difference in the c
response to time-dependent mechanical cues.
[49]. Thus, the combination of quantitatively functionalized soft inter-
faces and statistical image analysis can potentially be used as a comple-
mentary tool to molecular biology readouts, which in turn will identify
new routes for therapeutic intervention (Fig. 7).

4.2. Active control of cell fate with smart materials

Towards the “active” control of interactions at biological interfaces,
one of the sophisticated approaches would be the use of polymers
whose properties can be modulated by external stimuli. For example,
Okano and his co-workers demonstrated non-invasive detachment of
cell sheets from substrates using thermo-responsive, low critical solu-
tion temperature polymers, such as poly(N-isopropylacrylamide) [51].
ical transitions. (b) Confocal fluorescence images obtained for cardiac myoblast cells on
ell morphology. (d) Dynamic switching between round and contractile morphology in

image of Fig.�7
image of Fig.�8
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The cell monolayers can be harvested in a non-invasivemanner and can
be transplanted to the host tissue directly [52]. However, the switching
via low critical salvation temperature has been limited to detach conflu-
ent cell layers from the substrate, as cell viability may significantly be in-
terfered over time by changes in temperature. One possible solution is
theuse of physical gels that can reversibly change the physical properties
(hydrophilicity, degree of ionization, etc.) near physiological conditions
(Fig. 8). The reversible switching of polymer conformation and hence
the mechanical properties can be used as time-dependent cues to influ-
ence themorphology [53••]. Changes in the cell morphology and thus re-
modeling of cytoskeleton induced by an abrupt change in themechanical
properties of substrates may activate cell signaling pathways, which po-
tentially allows for the dynamic regulation of the differentiation of stem
cells [54,55].

5. Conclusions, perspectives

The unique combination of well defined model systems and experi-
mental techniques in real- and reciprocal space offers possibilities to in-
vestigate the physics of complex biological interfaces. Quantitative
understanding of interplays of generic and specific interactions enables
one to apply such systems in versatile directions, such as the regulation
of the fate of cells and cell ensembles using spatio-temporal cues and
design of novel sensor materials by transferring membranes and pro-
teins onto solid-based devices.
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